The QCD equation of state at non-zero temperature and quark chemical potential

1) Introduction

QCD phase diagram, EoS at $\mu = 0$

- High-T limit and Taylor expansion at non-vanishing chemical potential perturbation theory and lattice approach;
- 3) Bulk thermodynamics for small values of the chemical potential

pressure, density, energy density, entropy up to $\mathcal{O}(\mu_q^6)$;

 \Rightarrow the isentropic equation of state

4) Hadronic fluctuations

quark number and charge fluctuations

5) Conclusions

Critical behavior in hot and dense matter: QCD phase diagram

continuous transition for small chemical potential and small quark masses at

 $T_c \simeq 170 \, MeV \ \epsilon_c \simeq 0.7 \, GeV/fm^3$

want accurate T_c, ϵ_c, \dots determination to make contact to HI-phenomenology

Critical behavior in hot and dense matter: QCD phase diagram

continuous transition for small chemical potential and small quark masses at

 $T_c \simeq 170 \, MeV \ \epsilon_c \simeq 0.7 \, GeV/fm^3$

recent doubts on order of transition A. Di Giacomo et al., hep-lat/0503030

want accurate $T_c, \epsilon_c, ...$ determination to make contact to HI-phenomenology

Critical behavior in hot and dense matter: QCD phase diagram

$\mu = 0$: Equation of State and T_c

$$\begin{array}{ll} \bullet \ \epsilon/T^4 \ \text{for} \ m_\pi \simeq 770 \ \text{MeV}; \\ (m_\pi/m_\rho \simeq 0.7, \ TV^{1/3} = 4) \\ \epsilon_c/T_c^4 = 6 \pm 2 \end{array} \begin{array}{ll} \bullet \ T_c = (173 \pm 8 \pm sys) \ \text{MeV} \\ (T_c \ \text{for} \ m_\pi \gtrsim 300 \ \text{MeV}) \\ \epsilon_c = (0.3 - 1.3) \text{GeV/fm}^3 \end{array}$$

improved staggered fermions but still on rather coarse lattices:
 $N_{\tau} = 4$, i.e. $a^{-1} \simeq 0.8$ GeV
 FK, E. Laermann, A. Peikert, Nucl. Phys. B605 (2001) 579

Hagedorn spectrum : $\rho(m_H) \sim c \ m_H^a \ e^{m_H/T_H}$

$$\ln Z(\mathbf{T}, \boldsymbol{\mu_B}) = \int \mathrm{d}m_H \
ho(m_H) \ \ln Z_{m_H}(\mathbf{T}, \boldsymbol{\mu_B})$$

• $\int \Rightarrow \sum \sim$ 1000 exp. known resonance d.o.f.

Hagedorn spectrum : $\rho(m_H) \sim c \ m_H^a \ e^{m_H/T_H}$

$$\ln Z(\mathbf{T}, \boldsymbol{\mu_B}) = \int \mathrm{d}m_H \ \rho(m_H) \ \ln Z_{m_H}(\mathbf{T}, \boldsymbol{\mu_B})$$

resonance gas:

 \sim 1000 exp. known resonance d.o.f.

VS.

lattice calculation:

(2+1)-flavor QCD, $m_q/T = 0.4$

resonances give large contribution at T_c

Hagedorn spectrum : $\rho(m_H) \sim c \ m_H^a \ e^{m_H/T_H}$

$$\ln Z(\boldsymbol{T},\boldsymbol{\mu_B}) = \int \mathrm{d}m_H \ \rho(m_H) \ \ln Z_{m_H}(\boldsymbol{T},\boldsymbol{\mu_B})$$

resonance gas:

 \sim 1000 exp. known resonance d.o.f.

vs. lattice calculation: (2+1)-flavor QCD, $m_q/T = 0.4$ resonances give large contribution at T_c and explain quark mass dependence of T_c FK, K. Redlich, A. Tawfik, hep-ph/0303108

Hagedorn spectrum : $\rho(m_H) \sim c \ m_H^a \ \mathrm{e}^{m_H/T_H}$

$$\ln Z(\mathbf{T}, \boldsymbol{\mu_B}) = \int \mathrm{d}m_H \ \rho(m_H) \ \ln Z_{m_H}(\mathbf{T}, \boldsymbol{\mu_B})$$

hadron	$m_q \sim 0$	$m_q \to \infty$
pion	$m_{\pi} \sim \sqrt{m_q}$	$m_{\pi} \sim 2m_q$
rho	$m_{\rho} \sim 770 \text{ MeV} + c_{\rho} m_q$	$m_{ ho} \sim 2m_q$
higher meson resonances		
nucleon	$m_N \sim 940 \text{ MeV} + c_N m_q$	$m_N \sim 3m_q$
higher baryon resonances		

adjust hadron spectrum to conditions realized on the lattice

Hagedorn spectrum : $\rho(m_H) \sim c \ m_H^a \ \mathrm{e}^{m_H/T_H}$

$$\ln Z(\mathbf{T}, \boldsymbol{\mu}_{B}) = \int \mathrm{d}m_{H} \ \rho(m_{H}) \ \ln Z_{m_{H}}(\mathbf{T}, \boldsymbol{\mu}_{B})$$

Future:

need lattice calculations with realistic quark masses in order to

- perform more direct comparisons
- check (un)importance of light pions
- ullet finally determine T_c and ϵ_c

recent results on T_c

attempt to extrapolate to chiral and continuum limit:

$$\Lambda T_c = c_0 (m_\pi/m_
ho)^d + c_2 (aT_c)^2$$

C. Bernard et al., Phys. Rev. D71 (2005) 034504 $\mathcal{O}(a^2)$ improved staggered fermions, (2+1)-flavor, $N_{ au}=6, TV^{1/3}=2$ $m_{\pi}/m_{
ho}\gtrsim 0.3, \Lambda\equiv r_1=0.317(7)$ fm,

V.G. Bornyakov et al., hep-lat/0509122

 ${\cal O}(a)$ improved Wilson fermions, 2-flavor, $N_{ au}=8,\ 10,\ TV^{1/3}\simeq 2$ $m_{\pi}/m_{
ho}\gtrsim 0.4,\ \Lambda\equiv r_0=0.5$ fm,

recent results on T_c

attempt to extrapolate to chiral and continuum limit:

$$\Lambda T_c = c_0 (m_\pi/m_
ho)^d + c_2 (aT_c)^2$$

C. Bernard et al., Phys. Rev. D71 (2005) 034504

 $\mathcal{O}(a^2)$ improved staggered fermions, (2+1)-flavor, $N_{ au} = 6, TV^{1/3} = 2$ $m_{\pi}/m_{
ho} \gtrsim 0.3, \Lambda \equiv r_1 = 0.317(7)$ fm,

$$\Rightarrow \quad T_c = 169(12)(4) \quad (d = 2/\beta \delta = 1.08)$$
$$T_c = 174(11)(4) \quad (d = 2)$$

V.G. Bornyakov et al., hep-lat/0509122

 ${\cal O}(a)$ improved Wilson fermions, 2-flavor, $N_{ au}=8,\ 10,\ TV^{1/3}\simeq 2$ $m_{\pi}/m_{
ho}\!\gtrsim\!0.4,\,\Lambda\equiv r_0=0.5$ fm,

$$\Rightarrow$$
 $T_c = 166(3)$ $(d = 2/\beta \delta = 1.08)$

$$T_c = 173(3) \ (d = 2)$$

NOTE systematic errors: $\sim 10\%$ in scale setting and chiral extrapolation

recent results on QCD EoS

old Bielefeld result, 2001 improved staggered (p4), $N_{\tau} = 4$ 3-flavor, $m_{\pi} \simeq 770 \text{ MeV}$

MILC-collaboration, hep-lat/0509053 $\mathcal{O}(a^2)$ improved staggered, $N_{ au} = 4, 6$ (2+1)-flavor, $m_{\pi} \gtrsim 250$ MeV

 $\epsilon_c/T_c^4 \simeq 6$ insensitive to m_{π} and a^{-1} HOWEVER: thermodynamic limit?? $TV^{1/3} \simeq 2$ cut-off effects?? \Rightarrow improved actions

Y. Aoki et al., hep-lat/0510084 standard staggered, $N_{\tau} = 4, 6$ (2+1)-flavor, $m_{\pi} \rightarrow 140$ MeV (extrap.) ϵ/T^4 rescaled with $(\epsilon_{SB}/T^4)(N_{\tau})$

CBM workshop, GSI, Dec 2005, F. Karsch - p.6/33

recent results on QCD EoS

old Bielefeld result, 2001 improved staggered (p4), $N_{\tau} = 4$ 3-flavor, $m_{\pi} \simeq 770 \text{ MeV}$

MILC-collaboration, hep-lat/0509053 $\mathcal{O}(a^2)$ improved staggered, $N_{ au} = 4, 6$ (2+1)-flavor, $m_{\pi} \gtrsim 250$ MeV

 $\epsilon_c/T_c^4 \simeq 6$ insensitive to m_{π} and a^{-1} HOWEVER: thermodynamic limit?? $TV^{1/3} \simeq 2$ cut-off effects?? \Rightarrow improved actions

Y. Aoki et al., hep-lat/0510084 standard staggered, $N_{\tau} = 4, 6$ (2+1)-flavor, $m_{\pi} \rightarrow 140$ MeV (extrap.) ϵ/T^4 rescaled with $(\epsilon_{SB}/T^4)(N_{\tau})$

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A} \left[det \ M(\boldsymbol{\mu})\right]^f e^{-S_G(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A} \left[det \ M(\boldsymbol{\mu})\right]^f e^{-S_G(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

ways to circumvent this problem.

- reweighting: works well on small lattices; requires exact evaluation of detM
 Z. Fodor, S.D. Katz, JHEP 0203 (2002) 014
- Taylor expansion around $\mu = 0$: works well for small μ ;
 C. R. Allton et al. (Bielefeld-Swansea), Phys. Rev. D66 (2002) 074507
 R.V. Gavai, S. Gupta, Phys. Rev. D68 (2003) 034506
- imaginary chemical potential: works well for small μ; requires analytic continuation Ph. deForcrand, O. Philipsen, Nucl. Phys. B642 (2002) 290
 M. D'Elia and M.P. Lombardo, Phys. Rev. D64 (2003) 014505

$$Z(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu}) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(\mathbf{V}, \mathbf{T}, \boldsymbol{\mu})}$$
$$= \int \mathcal{D}\mathcal{A} \left[det \ M(\boldsymbol{\mu})\right]^f e^{-S_G(\mathbf{V}, \mathbf{T})}$$
$$\uparrow \text{complex fermion determinant;}$$

recent progress;

- reweighting: larger lattices; smaller quark mass;
 Z. Fodor, S.D. Katz, JHEP 0404 (2004) 050
- Taylor expansion: higher orders; larger volumes;
 C. R. Allton et al., Phys. Rev. D71 (2005) 054508
 R.V. Gavai, S. Gupta, Phys. Rev. D71 (2005) 114014
- imaginary chemical potential: improved algorithms
 O. Philipsen, hep-lat/0510077 (Lattice 2005)

recent progress;

- reweighting: larger lattices; smaller quark mass;
 Z. Fodor, S.D. Katz, JHEP 0404 (2004) 050
- Taylor expansion: higher orders; larger volumes;
 C. R. Allton et al., Phys. Rev. D71 (2005) 054508
 R.V. Gavai, S. Gupta, Phys. Rev. D71 (2005) 114014

```
    imaginary chemical potential: improved algorithms
    O. Philipsen, hep-lat/0510077 (Lattice 2005)
```

```
searches for the CCP:
\mu_B sensitive to V (and m_q)
\mu_B \sim 360 MeV
```

no clear-cut evidence

```
\mu_B \sim 180 \text{ MeV} (might be \sim 230 \text{ MeV})?
```

no evidence

recent progress;

- reweighting: larger lattices; smaller quark mass;
 Z. Fodor, S.D. Katz, JHEP 0404 (2004) 050
- Taylor expansion: higher orders; larger volumes;
 C. R. Allton et al., Phys. Rev. D71 (2005) 054508
 R.V. Gavai, S. Gupta, Phys. Rev. D71 (2005) 114014
- imaginary chemical potential: improved algorithms
 O. Philipsen, hep-lat/0510077 (Lattice 2005)

still an open question

```
searches for the CCP:

\mu_B sensitive to V (and m_q)

\mu_B \sim 360 MeV
```

no clear-cut evidence

```
\mu_B \sim 180 \text{ MeV} (might be \sim 230 \text{ MeV})?
```

no evidence

$$Z(V, T, \mu) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(V, T, \mu)}$$

= $\int \mathcal{D}\mathcal{A} \left[det \ M(\mu)\right]^f e^{-S_G(V, T)}$
(complex fermion determinant;
 $\frac{\mathcal{P}}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu)$
= $\sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu}{T}\right)^n$
= $c_0 + c_2 \left(\frac{\mu}{T}\right)^2 + c_4 \left(\frac{\mu}{T}\right)^4 + \mathcal{O}((\mu/T)^6)$

$$\mu=0$$
 \Rightarrow $rac{p}{T^4}\equiv c_0(T)$ CBM workshop, GSI, Dec 2005, F. Karsch – p.9/33

High-T limit and Taylor expansion at non-vanishing chemical potential

 p/T^4 is a polynomial in μ_q/T (good starting point for a Taylor expansion) (notation: $\mu \equiv \mu_q \equiv \mu_B/3$)

Infinite temperature limit \Leftrightarrow ideal gas

 $p/T^4 = (VT^3)^{-1} \ln Z(V,T,\mu_q)$

$$egin{array}{ll} \displaystyle rac{p}{T^4} \Big|_{\infty} &= \displaystyle rac{n_{
m f}}{2\pi T^3} igg(\int_0^\infty dk\,k^2\ln\left(1+z\exp\{-arepsilon(k)/T\}
ight) \ &+ \displaystyle \int_0^\infty dk\,k^2\ln\left(1+z^{-1}\exp\{-arepsilon(k)/T\}
ight) igg) \ , \ \ z=\exp(\mu_q/T) \end{array}$$

holds true in QCD at $\mathcal{O}(g^2)$

$$egin{array}{ll} rac{p}{T^4} \Big|_{\infty} &= n_f igg(rac{7\pi^2}{60} + rac{1}{2} igg(rac{\mu_q}{T} igg)^2 + rac{1}{4\pi^2} igg(rac{\mu_q}{T} igg)^4 igg) \ &- g^2 \; rac{n_f}{2\pi^2} igg(rac{5\pi^2}{36} + rac{1}{2} igg(rac{\mu_q}{T} igg)^2 + rac{1}{4\pi^2} igg(rac{\mu_q}{T} igg)^4 igg) \end{array}$$

...some remarks on higher order perturbation theory

- all perturbatively calculable contributions (up to O(g⁶ ln 1/g)) have been calculated also for μ > 0;
 A. Vuorinen, Phys.Rev. D68 (2003) 054017
- electric mass contributes in $\mathcal{O}(g^3)$; also shows up in Taylor expansion

$$egin{aligned} \Omega^{(3)}(T,\mu) &= rac{1}{6\pi} \left(rac{m_E(T,\mu^2)}{gT}
ight)^3 = rac{1}{6\pi} \left(1 + rac{n_f}{6} + rac{1}{2\pi^2} \mu^2
ight)^{3/2} \ &= rac{1}{6\pi} \left(rac{m_E(T,0)}{gT}
ight)^3 \left(1 + rac{9}{(12+2n_f)\pi^2} \mu^2 + \mathcal{O}(\mu^4)
ight) \end{aligned}$$

first contribution to $\mathcal{O}(\mu^6)$ is $\mathcal{O}(g^3)$ and arises from expansion of electric mass

...some remarks on higher order perturbation theory

- all perturbatively calculable contributions (up to O(g⁶ ln 1/g)) have been calculated also for μ > 0;
 A. Vuorinen, Phys.Rev. D68 (2003) 054017
- electric mass contributes in $\mathcal{O}(g^3)$; also shows up in Taylor expansion;
- leading contributions in higher orders are all $\mathcal{O}(g^3)$, arise from an expansion of electric mass and thus oscillate in sign

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6\right)$

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_q}{T}\right)^n \simeq c_0 + c_2 \left(\frac{\mu_q}{T}\right)^2 + c_4 \left(\frac{\mu_q}{T}\right)^4 + c_6 \left(\frac{\mu_q}{T}\right)^6$$

quark number density
$$\frac{n_q}{T^3} = 2c_2\frac{\mu_q}{T} + 4c_4\left(\frac{\mu_q}{T}\right)^3 + 6c_6\left(\frac{\mu_q}{T}\right)^5$$

quark number susceptibility
$$\frac{\chi_q}{T^2} = 2c_2 + 12c_4 \left(\frac{\mu_q}{T}\right)^2 + 30c_6 \left(\frac{\mu_q}{T}\right)^4$$

an estimator for the radius of convergence

$$\left(rac{\mu_q}{T}
ight)_{crit} = \lim_{n o \infty} \left|rac{c_{2n}}{c_{2n+2}}
ight|^{1/2}$$

 $c_n > 0$ for all n; singularity for real μ

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6\right)$

$$rac{p}{T^4} = rac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^\infty c_n(T) igg(rac{\mu_q}{T}igg)^n \simeq c_0 + c_2 igg(rac{\mu_q}{T}igg)^2 + c_4 igg(rac{\mu_q}{T}igg)^4 + c_6 igg(rac{\mu_q}{T}igg)^6$$

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6\right)$

$$rac{p}{T^4} = rac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^\infty c_n(T) igg(rac{\mu_q}{T}igg)^n \simeq c_0 + c_2 igg(rac{\mu_q}{T}igg)^2 + c_4 igg(rac{\mu_q}{T}igg)^4 + c_6 igg(rac{\mu_q}{T}igg)^6$$

Bulk thermodynamics for small μ_q/T on $16^3 imes 4$ lattices

Taylor expansion of pressure up to $\mathcal{O}\left((\mu_q/T)^6\right)$

$$rac{p}{T^4} = rac{1}{VT^3} \ln \mathcal{Z} = \sum_{n=0}^\infty c_n(T) igg(rac{\mu_q}{T}igg)^n \simeq c_0 + c_2 igg(rac{\mu_q}{T}igg)^2 + c_4 igg(rac{\mu_q}{T}igg)^4 + c_6 igg(rac{\mu_q}{T}igg)^6$$

irregular sign of c_n for $T \gtrsim T_c \quad \Leftrightarrow \quad$ singularity in complex plane

Radius of convergence: lattice estimates vs. resonance gas

Taylor expansion \Rightarrow estimates for radius of convergence ρ

Radius of convergence: lattice estimates vs. resonance gas

Taylor expansion \Rightarrow estimates for radius of convergence ρ_{2n}

HOWEVER still consistent with resonance gas!!! HRG analytic, LGT consistent with HRG \Rightarrow infinite radius of convergence not yet ruled out

Radius of convergence: lattice estimates vs. resonance gas

HRG analytic, LGT consistent with HRG \Rightarrow infinite radius of convergence not yet ruled out

The pressure for $\mu_q/T>0$

C.R. Allton et al. (Bielefeld-Swansea), PRD68 (2003) 014507

The pressure for $\mu_q/T>0$

C.R. Allton et al. (Bielefeld-Swansea), PRD68 (2003) 014507

 $\mu_q = 0$, $16^3 \times 4$ lattice improved staggered fermions; $n_f=2,\ m_\pi\simeq 770\ MeV$ 5 p/T⁴ p_{SB}/T 4 3 0.6 flavou 2 flavour 2 flavour pure gauge 0.4 1 T [MeV] 0 100 200 300 400 500 600

pattern for $\mu_q = 0$ and $\mu_q > 0$ similar; quite large contribution in hadronic phase; $\mathcal{O}((\mu/T)^6)$ correction small for $\mu_q/T \lesssim 1$

PRD71 (2005) 054508

contribution from $\mu_q/T > 0$ NEW: Taylor expansion, $\mathcal{O}((\mu/T)^6)$

Resonance gas: spectrum dependent consequences

• "fit" with modified spectrum $m_H(m_\pi) = m_H(0) + A \left(\frac{m_\pi}{m_H(0)}\right)^2$ \Rightarrow tests factorization

$$\frac{\chi_q}{T^2} = 9F(T)\cosh(3\mu_q/T) \sim c_2(T)\left(2 + 12\frac{c_4}{c_2}\left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^4\right)\right)$$

Energy and Entropy density for $\mu_q > 0$

S. Ejiri, F. Karsch, E. Laermann and C. Schmidt, in preparation

Thermodynamics: (NB: continuum $\hat{m} \equiv m_q$ lattice $\hat{m} \equiv m_q a$, implicit T-dependence)

• pressure
$$\frac{p}{T^4} \equiv \frac{1}{VT^3} \ln Z(T, \mu_q) = \sum_{n=0}^{\infty} c_n(T, \hat{m}) \left(\frac{\mu_q}{T}\right)^n$$

energy density from "interaction measure"

$$\frac{\epsilon - 3p}{T^4} = \sum_{n=0}^{\infty} c'_n(T, \hat{m}) \left(\frac{\mu_q}{T}\right)^n , \ \frac{c'_n(T, \hat{m})}{\mathrm{d}T} \equiv T \frac{\mathrm{d}c_n(T, \hat{m})}{\mathrm{d}T}$$

entropy density

$$\frac{s}{T^3} \equiv \frac{\epsilon + p - \mu_q n_q}{T^4} = \sum_{n=0}^{\infty} \left((4-n)c_n(T,\hat{m}) + c'_n(T,\hat{m}) \right) \left(\frac{\mu_q}{T}\right)^n$$

Taylor expansions of ϵ/T^4

- magnitudes similar for all three quantities;
- expansion of ϵ/T^4 and s/T^3 also dominated by $\mathcal{O}((\mu_q/T)^2)$ for $\mu_q/T \lesssim 1$ (except close to T_c)

EoS on HIC trajectories

dense matter created in a HI-collision expands and cools at fixed entropy and baryon number

 \Rightarrow lines of constant S/N_B in the QCD phase diagram

for example:

isentropic expansion, "mixed phase model": V.D. Toneev, J. Cleymans, E.G. Nikonov, K. Redlich, A.A. Shanenko, J. Phys. G27 (2001) 827

EoS on HIC trajectories

- dense matter created in a HI-collision expands and cools at fixed entropy and baryon number
 - \Rightarrow lines of constant S/N_B in the QCD phase diagram
 - high T: ideal gas

$$\frac{S}{N_B} = 3 \frac{\frac{32\pi^2}{45n_f} + \frac{7\pi^2}{15} + \left(\frac{\mu_q}{T}\right)^2}{\frac{\mu_q}{T} + \frac{1}{\pi^2} \left(\frac{\mu_q}{T}\right)^3}$$

 $S/N_B = {
m constant} \Leftrightarrow \ \mu_q/T \ {
m constant}$

Iow T: nucleon + pion gas

T
ightarrow 0: $\mu_q/T \sim c/T$

Lines of constant S/N_B

- isentropic trajectories close to ideal gas behavior for $T > T_c$
- Itrajectories bend towards larger μ_q for $T < T_c$
- $\mathcal{O}(\mu_q^6)$ correction (open sym.)
 is small for $\mu_q/T \lesssim 0.8$ (despite large errors)

S. Ejiri, FK, E. Laermann, C. Schmidt, in prep.

Lines of constant S/N_B

- isentropic trajectories close to ideal gas behavior for $T > T_c$
- Itrajectories bend towards larger μ_q for $T < T_c$
- $\mathcal{O}(\mu_q^6)$ correction (open sym.)
 is small for $\mu_q/T \leq 0.8$ (despite large errors)

S. Ejiri, FK, E. Laermann, C. Schmidt, in prep.

- RHIC corresponds to
 $S/N_B \simeq 300 \simeq \infty$
- SPS corresponds to
 $S/N_B \simeq 45$
- FAIR will operate at $S/N_B \simeq 30$ or $\mu_q/T \lesssim 0.9$

Isentropic Equation of State

 μ_q -dependent contribution added on top of the $\mu_q = 0$ result

Isentropic Equation of State

pressure on lines of constant S/N_B

energy density on lines of constant S/N_B

- μ_q -dependent contribution added on top of the $\mu_q = 0$ result
- RHIC EoS essentially coincides with the $\mu_q = 0$ EoS
- EoS at SPS and RHIC differ at high T by less than 10%
- **FAIR:** changes at high $T \sim 30\%$; but need better resolution at low T

Isentropic Equation of State: p/ϵ

 p/ϵ vs. ϵ shows almost no dependence on S/N_B

- softest point: $p/\epsilon \simeq 0.075$
- phenomenological EoS for $T_0 \lesssim T \lesssim 2T_0$

$$rac{p}{\epsilon} = rac{1}{3} \left(1 - rac{1.2}{1+0.5\epsilon}
ight)$$

Velocity of sound

steep EoS:

rapid change of energy density; slow change of pressure

 \Rightarrow reduced velocity of sound \Rightarrow more time for equilibration

Velocity of sound

steep EoS:

rapid change of energy density; slow change of pressure

 \Rightarrow reduced velocity of sound \Rightarrow more time for equilibration

Hadronic fluctuations and chiral symmetry restoration

generic QCD phase diagram ($n_f = 2$)

Hadronic fluctuations and chiral symmetry restoration

expect 2^{nd} order transition in 3-d, O(4) symmetry class;

scaling field:
$$t = \left| \frac{T - T_c}{T_c} \right| + A \left(\left(\frac{\mu_q}{T_c} \right)^2 - \left(\frac{\mu_{crit}}{T_c} \right)^2 \right)$$

singular part: $f_s(T,\mu_u,\mu_d) = b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha}$

$$rac{\partial^2 \ln \mathcal{Z}}{\partial \mu_{q,I}^2} \sim t^{-oldsymbol{lpha}} ~~,~~~ rac{\partial^4 \ln \mathcal{Z}}{\partial \mu_{q,I}^4} \sim t^{-(2+lpha)} ~~~(\mu>0)$$

 $\ \, {\sf O}(4)/{\sf O}(2): \, \alpha < 0, \, {\sf small} \Rightarrow$

 $\langle (\delta N_q)^2 \rangle$ develops a cusp

 $\langle (\delta N_q)^4 \rangle$ diverges on the O(4) critical line;

strength ~
$$\left(\frac{\mu_{crit}}{T_c}\right)^4$$
 (~ 10⁻⁴ at RHIC)

CBM workshop, GSI, Dec 2005, F. Karsch - p.25/33

Hadronic fluctuations and chiral symmetry restoration

expect 2^{nd} order transition in 3-d, O(4) symmetry class;

scaling field:
$$t = \left| \frac{T - T_c}{T_c} \right| + A \left(\frac{\mu_q}{T_c} \right)^2$$
, $\mu_{crit} = 0$

singular part: $f_s(T,\mu_u,\mu_d) = b^{-1} f_s(t b^{1/(2-lpha)}) \sim t^{2-lpha}$

$$rac{\partial^2 \ln \mathcal{Z}}{\partial \mu_q^2} \sim t^{1-lpha} ~~,~~ rac{\partial^4 \ln \mathcal{Z}}{\partial \mu_q^4} \sim t^{-lpha} ~~(\mu=0)$$

 $\ \, {\rm O}(4)/{\rm O}(2): \, \alpha < 0, \, {\rm small} \Rightarrow$

 $\langle (\delta N_q)^2 \rangle$ dominated by T-dependence of regular part $\langle (\delta N_q)^4 \rangle$ develops a cusp

Fluctuations of the baryon number density ($\mu = 0$)

baryon number density fluctuations: (MILC coll., hep-lat/0405029)

$$egin{aligned} &\chi_q \ &T^3 = \left(rac{\mathrm{d}^2}{\mathrm{d}(\mu/T)^2}rac{p}{T^4}
ight)_{T \,\mathrm{fixed}} \ &= rac{9 \; T}{V} \left(\langle N_B^2
angle - \langle N_B
angle^2
ight) \end{aligned}$$

to be studied in event-by-event fluctuations

recent papers:

V. Koch, E.M. Majumder, J. Randrup, nucl-th/0505052 S. Ejiri, FK, K. Redlich, hep-ph/05090521 R.V. Gavai, S. Gupta, hep-lat/0510044

Quark number and charge fluctuations at $\mu_B = 0$; 2-flavor QCD ($m_\pi \simeq 770~MeV$)

monotonic increase; close to ideal gas value for $T \ge 1.5T_c$

develops cusp at T_c

reaches ideal gas value for $T \gtrsim 1.5T_c$

Fluctuations of the baryon number density ($\mu \ge 0$)

Fluctuations of the baryon number density ($\mu \ge 0$)

Fluctuations of the quark number density ($\mu_q > 0$)

quark number density fluctuations:

up to $\mathcal{O}\left((\mu_q/T)^2
ight)$

$$rac{\chi_q}{T^2} = \left(rac{\partial^2}{\partial (\mu_q/T)^2} rac{p}{T^4}
ight)_{T \ {
m fixed}}$$

 $=rac{1}{VT^3}\left(\langle N_q^2
angle-\langle N_q
angle^2
ight)$

high-T, massless limit: polynomial in (μ_q/T)

$$rac{\chi_{q,SB}}{T^2} = n_f + rac{3n_f}{\pi^2} igg(rac{\mu_q}{T}igg)^2$$

Fluctuations of the quark number density ($\mu_q > 0$)

quark number density fluctuations:

up to $\mathcal{O}\left((\mu_q/T)^4
ight)$

$$=rac{1}{VT^3}\left(\langle N_q^2
angle-\langle N_q
angle^2
ight)$$

high-T, massless limit: polynomial in (μ_q/T)

$$rac{\chi_{q,SB}}{T^2} = n_f + rac{3n_f}{\pi^2} igg(rac{\mu_q}{T}igg)^2$$

Fluctuations of the quark number density ($\mu_q > 0$)

quark number density fluctuations:

$$rac{\chi_q}{T^2} = \left(rac{\partial^2}{\partial (\mu_q/T)^2} rac{p}{T^4}
ight)_{T ext{ fixed}}$$

$$=rac{1}{VT^3}\left(\langle N_q^2
angle-\langle N_q
angle^2
ight)$$

high-T, massless limit: polynomial in (μ_q/T)

$$rac{\chi_{q,SB}}{T^2} = n_f + rac{3n_f}{\pi^2} igg(rac{\mu_q}{T}igg)^2$$

larger density fluctuations for $\mu_q > 0$; coming closer to the chiral critical point?

$$\left(\frac{\partial p}{\partial n_q}\right)_T = \frac{n_q}{\chi_q}$$

 $\Rightarrow \chi_q$ will diverge on chiral critical point

Isothermal compressibility of the quark gluon plasma

inverse compressibility:

$$\kappa_T^{-1} = rac{n_q}{\chi_q} = \left(rac{\partial p}{\partial n_q}
ight)_{T ext{ fixed}}$$

high-T, massless limit: polynomial in (μ_q/T)

$$rac{n_q}{\chi_q} = \mu_q + \mathcal{O}\left(\left(rac{\mu_q}{T}
ight)^3
ight)$$

Isothermal compressibility of the quark gluon plasma

inverse compressibility:

$$\kappa_T^{-1} = rac{n_q}{\chi_q} = \left(rac{\partial p}{\partial n_q}
ight)_{T ext{ fixed}}$$

high-T, massless limit: polynomial in (μ_q/T) $\frac{n_q}{\chi_q} = \mu_q + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^3\right)$

large density fluctuations for $\mu_q > 0, \ T < T_c$ "saturated" by fluctuations in a hadron resonance gas

expect:
$$\left(rac{\partial p}{\partial n_q}
ight)_T = rac{n_q}{\chi_q} = 0$$

at chiral critical point

Isothermal compressibility of the quark gluon plasma

inverse compressibility:

$$\kappa_T^{-1} = rac{n_q}{\chi_q} = \left(rac{\partial p}{\partial n_q}
ight)_{T ext{ fixed}}$$

high-T, massless limit: polynomial in (μ_q/T) $\frac{n_q}{\chi_q} = \mu_q + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^3\right)$

large density fluctuations for $\mu_q > 0, T < T_c$ "saturated" by fluctuations in a hadron resonance gas

expect:
$$\left(\frac{\partial p}{\partial n_q} \right)_T = \frac{n_q}{\chi_q} = 0$$

at chiral critical point

 $m_\pi \simeq 770$ MeV, smaller m_a needed!!

CBM workshop, GSI, Dec 2005, F. Karsch – p.31/33

Charge fluctuations for $\mu_q > 0$

quark number density fluctuations:

$$\frac{\chi_Q}{T^2} = \frac{1}{4} \left(\frac{\chi_I}{T^2} + \frac{1}{9} \frac{\chi_Q}{T^2} \right)$$

$$=rac{1}{VT^3}\left(\langle N_Q^2
angle-\langle N_Q
angle^2
ight)$$

high-T, massless limit: polynomial in (μ_q/T)

$$rac{\chi_{Q,SB}}{T^2} = rac{5}{9} + rac{15}{9\pi^2} igg(rac{\mu_q}{T}igg)^2$$

Charge fluctuations for $\mu_q > 0$

quark number density fluctuations:

$$rac{\chi_Q}{T^2} = rac{1}{4} \left(rac{\chi_I}{T^2} + rac{1}{9} rac{\chi_q}{T^2}
ight)$$

$$=rac{1}{VT^3}\left(\langle N_Q^2
angle-\langle N_Q
angle^2
ight)$$

high-T, massless limit: polynomial in (μ_q/T)

 $\frac{\chi_{Q,SB}}{T^2} = \frac{5}{9} + \frac{15}{9\pi^2} \left(\frac{\mu_q}{T}\right)^2$ charge fluctuations for $(\mu_q/T) \lesssim 1$ dominated by isospin fluctuations; Nonetheless: expect singularity at chiral critical point;

arises from contribution of χ_q ;

 χ_I is expected to be non-singular at CCP

...Status of finite density calculations

- Calculations for non-vanishing chemical potential ($\mu_q > 0$) show a rapid transition from a HRG to a QGP; signaled by sudden changes in EoS and susceptibilities
- where and whether the transition becomes first order ... \Rightarrow Z. Fodor, tomorrow

... Status of finite density calculations

- Calculations for non-vanishing chemical potential ($\mu_q > 0$) show a rapid transition from a HRG to a QGP; signaled by sudden changes in EoS and susceptibilities
- where and whether the transition becomes first order ... \Rightarrow Z. Fodor, tomorrow
- In alternative approach in the canonical ensemble (B > 0)
 Iooks promising; so far applied only to 4-flavor QCD where the transition always is first order

