Observations of Neutron Stars and the Equation of State of Nuclear Matter

Joachim Trümper Max-Planck-Institut für extraterrestrische Physik Garching / Germany

with inputs from V. Burwitz, F. Haberl, S. Zavlin

GSI Kolloquium 14. Dezember 2005

Neutron Star Models

(u, d quarks)

(u, d, s quarks) (hypothetical)

OUTLINE

- The Equation of State (EOS) of Nuclear Matter
- Accelerator Experiments : Au-Au collisions
- Observations of Neutron Stars
 - Coherent Pulsations in X-Ray Burst Sources
 - Quasi-periodic Pulsations in Low Mass X-Ray Binaries
 - Radiation Radii of Pulsars
 - Radiation Radii of Isolated Neutron Stars
- Conclusions and Outlook

Theoretical EOS models

Nuclear saturation density $\rho_0 = 2.7 \times 10^{14}$ g cm⁻³

Zero-temperature EOS for "symmetric" nuclear matter based on Au–Au collisions at 394 GeV (2 GeV/nucleon).

(Experiment E 895 at the AGS Brookhaven National Laboratory)

Zero-temperature EOS for neutron matter,derived from symmetric matter EOS by asymmetric corrections with strong and weak density dependencies.

(Danielewicz, Lacey and Lynch, Science 2002)

Au – Au collisions

(Danielewicz et al. 2002)

Observations of Neutron Stars yield informations on M, R, M/R, M/R²

measured neutron star masses

M – R curves cross each other:

A unique determination of the EOS requires observations of neutron stars with different M and R.

ROSAT (G, UK, USA) 1990 - 1999 0.1 - 2.5 KeV, 4 arcseconds All Sky Survey + Pointings 200 000 Sources

Chandra (NASA) 1999 0.5 – 5 KeV, 0.5 arcseconds High angular resolution High resolution spectroscopy

XMM - Newton (ESA) 1999 0.2 – 20 KeV, 15 arcseconds Large collecting power, High resolution spectroscopy

Rossi X-ray Timing Explorer 1995 2 – 250 KeV, 1 degree Large collecting power High time resolution

X-Ray Burst Oscillations I (seen in more than a dozen objects): X-ray Bursts in Low Mass X-ray Binaries = Thermonuclear Explosions on Neutron Stars

Low Mass X-ray Binary

X-ray burst and burst oscillations in 4 1728-34 at a frequency of 364 Hz (thought to be the spin period of the neutron star)

X-Ray Burst Oscillations II:

Modelling the 314 Hz Light Curve of XTE J1814-338 (Bhattacharyya et al., 2004, similar work by Poutanen, 2004)

The fully added light curve of 22 bursts

model parameters:

- stellar radius
- latitude of the hot spot
- angular size of the hot spot
- beaming I (ψ) ~ cosⁿ ψ in the neutron star rest frame
- inclination of the spin axis vs.
 line of sight

effects considered:

- G.R. light bending,
- frame dragging

$$\Rightarrow \frac{GM}{Rc^2} = \frac{R_s}{2R} \le 0.24$$

 \Rightarrow R > 8.7 km for M = 1.4 M_{\odot}

Quasiperiodic Oscillations (QPO) at High Frequencies in LMxB's

Power density spectrum of Sco X-1 (van der Klis 1997)

The highest QPO frequency (at 1330 Hz) ever observed in 4U 0614+09 (van Straaten et al. 2000)

High Frequency QPO

The origin of the high frequency QPO must be in the boundary layer between the accretion disk and the neutron star surface.

In a popular class of models (e.g. Miller 2003)

v (QPO) $\approx v$ (orbit of accreting gas)

Since $R_{orbit} > R_{NS}$ and R_{ISCO} (innermost stable circular orbit): $M < 2.2 M^{\odot}$ (1 kHz / v_{orbit}) (1+0.75j) R < 19.5 km (1 kHz / v_{orbit}) (1+0.2j)

 $j = \frac{cJ}{GM^2}$ = dimensionless spin parameter

Limits to M, R for a nonrotating star (j = 0)

Thermal Radiation from Hot Neutron Stars

 \Rightarrow M / R

 $\Rightarrow \mathbf{R}$

• gravitational redshift of lines or edges problem: line/edge identification, requires knowledge of the magnetic field

> Iron K_α : E = 6.4 KeV B = 10^{12} G : E_{cycl} ~ 11.6 KeV

- \Rightarrow this is not a reliable method
- photometric radius problem: requires knowledge of the distance
 - blackbody models $\rightarrow R_{bb}$
 - atmospheric models without or with magnetic fields \rightarrow R > 2 R_{bb} (H, He) \geq R_{bb} (Fe)

Application to Pulsars and Isolated Neutron Stars \Rightarrow

X-RAY EMISSION FROM PULSARS

P = 1.6 ms.....5 s

 Photon Emission from extremly high energetic electrons (Synchroton radiation, inverse Compton effect)

• Thermal Emission from the hot surface T $\sim 10^6$ K

- Hot polar cap (T ~ few 10^6 K) heated by
 - internal friction or
 - particle bombardment

Radio Pulsars

red symbols: X-ray detections

green symbols: γ-ray and X-ray detections

magnetic dipole braking: age = P / $2\dot{P}$, B = $3.2 \times 10^{19} (P\dot{P})^{1/2}$

Radiation Radii of Pulsars having measured Distances

These Neutron Star Radii appear to be large

(but uncertain because of the presence of nonthermal components).

Radio-quiet Neutron Stars in the ROSAT Survey

Distribution of the ~ 20 000 Brightest RASS Sources

How to find them ?

Radio-quiet Isolated Neutron Stars

- Soft X- ray sources in ROSAT survey
- Blackbody-like X- ray spectra, no non thermal hard emission
- Nearby: low absorption ~10²⁰ H cm⁻², large proper motion, RX J1856.5-3754: 117pc
- Low luminosity ~10³¹ erg s⁻¹
- Constant X- ray flux on time scales of years
- No obvious association with SNR
- No radio emission
- Optically faint
- X- ray pulsations

kT/eV	P/s	Optical	
44	3.45	B = 26.6	-
85-95 96	8.39 11.37	B = 26.6 B > 24	PM = 97 mas/y
86 96	10.31	m _{50ccd} = 26.6 B = 27.2	 PM = 145 mas/y
60 100	9.43	V = 25.7 R > 23	PM = 332 mas/y
	kT/eV 44 85-95 96 86 96 60 100	kT/eV P/s 44 3.45 85-95 8.39 96 11.37 86 10.31 96 — 60 — 100 9.43	kT/eVP/sOptical44 3.45 B = 26.685-95 8.39 B = 26.696 11.37 B > 2486 10.31 m_{50ccd} = 26.696B = 27.260V = 25.71009.43R > 23

"The Magnificent Seven"

X-ray pulsations

Optical to X-rays

X-ray spectral survey: absorption feature RX J1605.3+3249

 $E_{line} = 450 - 480 \text{ eV}$ Van Kerkwijk et al. (2003) submitted

EPIC kT = 92 eV $N_{\text{H}} = 1.0 \text{ x } 10^{20} \text{ cm}^{-2}$ $E_{\text{line}} \sim 450 \text{ eV}$ $\sigma \sim 70 \text{ eV}$ EW = 37 eV

X-ray spectral survey: absorption feature

RBS1223 EW = 150 eV RX J0720.4-3125 EW = 40 eV

Magnetic Fields

- Magnetic dipole braking $\rightarrow B_{db} \approx 3.2 \times 10^{19} (P \times dP/dt)^{1/2}$ Spin - down rate (P, dP/dt)
- Proton cyclotron absorption $\rightarrow B_{cyc} \approx 1.6 \times 10^{11} E_{cyc} (eV)/(1-2GM/c^2R)^{1/2}$

Object	P [s]	Ampl. [%]	dP/dt [10 ⁻¹³ ss ⁻¹]	E _{cyc} [eV]	B _{db} [10 ¹³ G]	B _{cyc} [10 ¹³ G]
RX J0420.0-5022 RX J0720.4-3125 RX J0806.4-4123 1RXS J130848.6+ 212708 RX J1605 3+3249	3.45 8.39 11.37 10.31	13 8-15 6 18	< 92 0.698 < 18 < 9	330 260 100-300 450-480	< 18 <mark>2.4</mark> < 14 < 10	6.6 5.2 2-6 9 1-9 7
RX J1856.5-3754 1RXS J214303.7+ 212708	 9.43	< 2 4		~700	~1*	~14

* derived from the spin-down luminosity to power the H_α nebula and from the age of the neutron star ($≤10^6$ yrs)

Radio Pulsars

radio quiet isolated Neutron Stars

red symbols: X-ray detections

green symbols: γ-ray and X-ray detections

magnetic dipole braking: age = P / 2P, B = $3.2 \times 10^{19} (PP)^{1/2}$

The likely nature of the radio quiet isolated NS

- − periods ~ 10s \Rightarrow old pulsars
 why no radio emission?
 - INS are located beyond the death line
 - radio beam (if it existed) would be very narrow (few degrees) because of their long periods.
- strong magnetic fields (B ≥ 10^{13} G) based on P and proton cyclotron lines
 - Such strong magnetic fields are required to make the spin down time ($\propto P^2 B^{-2}$) shorter than their cooling time (~ 10⁶ yrs).
- \Rightarrow isolated neutron stars may have been normal pulsars when they were young

Discovery of the Bright Isolated Neutron Star RX J1856-3754 in front of the R. Coronae Australis molecular cloud

(Walter, Wolk & Neuhäuser, 1996)

Optical Identification of the Neutron Star RX J1856-3754

 A very faint and blue star (V = 25.6, U= 24.4) detected by the HST WFPC2 (Walter & Matthews, 1997)

• $F_x/F_{opt} \approx 75000$

 The source is located in front of a molecular cloud: *d* ≤ 130 *pc*

PRC97-32 • ST Scl OPO • September 25, 1997 F. Walter (State University of New York at Story Brook) and NASA

Optical identifications RX J1856.5-3754

Distance 117 ± 12 pcHSTProper motion 332 mas y $^{-1}$ Tangential space velocity 185 km s $^{-1}$ Walter (2001); Walter & Lattimer (2002)

VLT

Bowshock Nebula Kerkwijk & Kulkarni (2001)

High proper motion: Not heated by accretion of ISM !!

RX J1856.5-3754: Hα bow shock nebula

HIGH RESOLUTION CHANDRA LETG SPECTRUM OF RX J1856-3754

< 1% !

Why no spectral features?

- No photosphere, but condensed matter surface? (Burwitz, Trümper et al. 2003, Zane et al. 2003, based on early work of Lenzen & Trümper 1978, Brinkmann 1980).
 - But: Condensation requires B ≥ 10¹⁴ G for hydrogen at kT ~ 60 eV, condensation of iron is highly uncertain (Lai, 2001)!
- Line smearing in strong magnetic fields (B ~ 10¹³ G) is probably working.
 - Variations of dipolar magnetic field strength of a factor ~ 2 across the photosphere!

The Spectrum of RX J1856-3754 is blackbody-like in the Optical and X-rays

Two temperature model:

- hot polar cap
- cooler surface

 \Rightarrow R_{∞} \geq 16.9 km \times d₁₂₀

Temperature distribution:

$$T = T_{\text{pole}} \left(\frac{1}{1 + (\theta/\theta_0)^2} \right)$$
$$\Rightarrow R_{\infty} = 16.8 \text{ km} \times d_{120}$$

This is a conservative limit because any real photosphere will have a lower emissivity than the assumed blackbody.

Constraints on mass and radius of RX J1856-3754 for a distance of 117 pc

CONCLUSION

The data require definitely a stiff equation of state

Future requirements:

- More sources: Sensitive sky surveys in X-rays (e.g. ROSITA) optical telescopes of the 30 – 100 m class (e.g. CELT, OWL)
- More/better absolute distances
- Better data on timing and spectroscopy (10 m² X-ray Detector, XEUS)
- Progress in physics of heavy atoms/condensed matter in superstrong magnetic fields

Spectral Fits - Temperatures and Radii

(e.g. Pavlov & Zavlin et al., 1996.....2004)

Blackbody models
$$f_x = \frac{R_{bb}^2}{d^2} \cdot \sigma T_{bb}^4$$

nonmagnetic H, He photospheric models

magnetic H, He photospheric models (B ~ $5x10^{12}$ G)

Fe photospheric models

magnetic Fe photospheric models

 T_{bb}^{∞} , R_{bb}^{∞}/d $T^{\infty} \sim (0.3-0.7) T_{bb}^{\infty}$ $R^{\infty} \sim (2-7) R_{bb}^{\infty}$

The parameters are between the nonmagnetic and blackbody cases

 $\begin{array}{l} \mathsf{T}^{\infty} \stackrel{\scriptstyle <}{\scriptstyle \sim} \; \mathsf{T}^{\infty}_{bb} \\ \mathsf{R}^{\infty} \stackrel{\scriptstyle <}{\scriptstyle \sim} \; \mathsf{R}^{\infty}_{bb} \end{array}$

only crude models exist based on energy levels and oscillator strengths calculated in Hartree-Fock approximation (c.f. Rajagopal, Romani, Miller 1997)

X-Ray Burst Oscillations (in more than a dozen objects)

X-ray Bursts in Low Mass X-ray Binaries = Thermonuclear Explosions on Neutron Stars

Low Mass X-ray Binary

X-ray burst and burst oscillations in 4 1728-34 at a frequency of 364 Hz (thought to be the spin period of the neutron star)

Modelling the 314 Hz Light Curve of XTE J1814-338 (Bhattacharyya et al., 2004, similar work by Poutanen, 2004)

The fully added light curve of 22 bursts

model parameters:

- stellar radius
- latitude of the hot spot
- angular size of the hot spot
- beaming I (ψ) ~ cosⁿ ψ in the neutron star rest frame
- inclination of the spin axis vs.
 line of sight

effects considered:

- G.R. light bending,
- frame dragging

$$\Rightarrow \frac{GM}{Rc^2} = \frac{R_s}{2R} \le 0.24$$
$$\Rightarrow R > 8.7 \text{ km for M} = 1.4 \text{ M}_{\odot}$$

Radio Pulsars

red symbols: X-ray detections

green symbols: γ-ray and X-ray detections

magnetic dipole braking: age = P / $2\dot{P}$, B = $3.2 \times 10^{19} (P\dot{P})^{1/2}$

The likely nature of the dim isolated NS

- − periods ~ 10s \Rightarrow old pulsars why no radio emission?
 - INS are located beyond the death line
 - radio beam (if it existed) would be very narrow (few degrees) because of their long periods.
- strong magnetic fields (B ≥ 10¹³G)
 based on P and proton cyclotron lines
 - Such strong magnetic fields are required to make the spin down time (∝P² B⁻²) shorter than their cooling time (few 10⁶ yrs).

 \rightarrow dim isolated neutron stars have been normal pulsars when they were young