# Lattice QCD at finite T and $\mu$ , phase diagram and the critical point

Zoltán Fodor Bergische Universität, Wuppertal

- 1. Introduction
- 2. Overlap improving multi-parameter reweighting
- 3. Phase diagram, critical endpoint in  $n_f$ =2+1 dynamical QCD
- 4. Taylor expansion, imaginary chemical potential methods
- 5. The density of states method at larger  $\mu$
- 6. Summary

# Lattice QCD at finite T and $\mu$ , phase diagram and the critical point

Zoltán Fodor Bergische Universität, Wuppertal

- 1. Introduction
- 2. Overlap improving multi-parameter reweighting
- 3. Phase diagram, critical endpoint in  $n_f$ =2+1 dynamical QCD
- 4. Taylor expansion, imaginary chemical potential methods
- 5. The density of states method at larger  $\mu$
- 6. Summary

#### Introduction, experimental motivation



## Chiral phase transition (PT)

$$n_f=2$$
 with  $m_q=0$  at  $\mu=0\Rightarrow 2^{nd}$  order PT  $n_f=2$  with  $m_q=0$  at  $T=0\Rightarrow 1^{st}$  order PT  $n_f=2$  with  $m_q=0\Rightarrow$  tricritical point (P) at  $\mu$ ,  $T\neq 0$ 

 $n_f=$  3 with  $m_q=$  0 at  $\mu=$  0  $\Rightarrow$  1 $^{st}$  order PT increasing  $m_s$  weakens the 1 $^{st}$  order PT  $\Rightarrow$  cross-over

$$n_f=2+1$$
 with physical  $m_q$  at  $\mu=0\Rightarrow$  cross-over  $n_f=2+1$  with physical  $m_q$  at  $T=0\Rightarrow \mathbf{1}^{st}$  order PT  $n_f=2+1$  with physical  $m_q\Rightarrow$  critical endpoint (E) at  $\mu, T\neq 0$ 

"If and when the critical point E is discovered, it will appear prominently on the map of the phase diagram featured in any future textbook of QCD." (F. Wilczek)

• location of the endpoint: nonperturbative prediction of QCD lattice gauge theory: serious problems at  $\mu \neq 0$  measure (Dirac determinant) complex  $\Rightarrow$  no importance sampling

I.M. Barbour et al., Nucl. Phys. B (Proc. Supl.) 60A, 220 (1998) Glasgow method:  $\mu$  reweighting based on an ensemble at  $\mu=0$  after collecting 20 million configurations only unphysical results  $T=\mu=0$  ensemble does not overlap with the transition states

M.A. Halasz et al., Phys. Rev. D58, 096007 (1998) random matrix model for the Dirac operator can be solved  $\Rightarrow T_E \approx$  120 MeV and  $\mu_E \approx$  700 MeV, can be off by a factor of 2-3

J. Berges, K. Rajagopal, Nucl. Phys. B538, 215 (1999) Nambu-Jona-Lasinio model,  $T-\mu$  phase diagram

## lattice action of QCD and Monte-Carlo techniques



anti-commuting  $\psi(x)$  quark fields live on the sites gluon fields,  $A^a_{\mu}(x)$  are used as links and plaquettes

$$U(x,y) = \exp(ig_s \int_x^y dx'^{\mu} A_{\mu}^a(x') \lambda_a/2)$$

$$P_{\mu\nu}(n) = U_{\mu}(n)U_{\nu}(n+e_{\mu})U_{\mu}^{\dagger}(n+e_{\nu})U_{\nu}^{\dagger}(n)$$

 $S = S_g + S_f$  consists of the pure gluonic and the fermionic parts

$$S_g = 6/g_s^2 \cdot \sum_{n,\mu,\nu} \left[ 1 - \text{Re}(P_{\mu\nu}(n)) \right]$$

quark differencing scheme:

$$\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) \rightarrow \bar{\psi}_{n}\gamma^{\mu}(\psi_{n+e_{\mu}} - \psi_{n-e_{\mu}})$$

$$\bar{\psi}(x)\gamma^{\mu}D_{\mu}\psi(x) \rightarrow \bar{\psi}_{n}\gamma^{\mu}U_{\mu}(n)\psi_{n+e_{\mu}} + \dots$$

in continuum the chemical potential acts:  $\mu a \bar{\psi}_x \gamma_4 \psi_x$  fourth component of an imaginary(!), constant vector potential

fermionic part as a bilinear expression:  $S_f = \bar{\psi}_n M_{nm} \psi_m$ 

Euclidean partition function gives Boltzman weights

$$Z = \int \prod_{n,\mu} [dU_{\mu}(x)][d\bar{\psi}_n][d\psi_n]e^{-S_g - S_f} = \int \prod_{n,\mu} [dU_{\mu}(n)]e^{-S_g} \det(M[U])$$

Metropolis step for importance sampling:

$$P(U \to U') = \min \left[ 1, \exp(-\Delta S_g) \det(M[U']) / \det(M[U]) \right]$$

for  $\mu$ =0 the determinant is positive, for  $\mu$   $\neq$ 0 it is complex  $\Rightarrow$  no probability interpretation, no Monte-Carlo method

## Overlap improving multi-parameter reweighting

Z. Fodor and S.D. Katz, Phys. Lett. B534 (2002) 87

$$Z(m,\mu,\beta) = \int \mathcal{D}U \exp[-S_g(\beta,U)] \det M(m,\mu,U) =$$

$$\int \mathcal{D}U \exp[-S_g(\beta_0,U)] \det M(m_0,\mu=0,U)$$

$$\left\{ \exp[-S_g(\beta,U) + S_g(\beta_0,U)] \frac{\det M(m,\mu,U)}{\det M(m_0,\mu=0,U)} \right\}$$

first line = measure, field configurations of the Monte-Carlo curly bracket = can be measured on each configuration, weight

expectation value of an observable O:

$$\langle 0 \rangle_{\beta,\mu,m} = \frac{\sum w(\beta,\mu,m)O(\mu,m)}{\sum w(\beta,\mu,m)}$$

observables to get the transition points at  $\mu \neq 0$  (susceptibilities)

simultaneously changing several parameters: better overlap e.g. transition configurations are mapped to transition ones

## Comparison with the Glasgow method



one parameter reweighting single parameter ( $\mu$ ) purely hadronic configurations

New method two parameters ( $\mu$  and  $\beta$ ) transition configurations

## QCD with $n_f$ =2+1 dynamical staggered fermions

- Z. Fodor, S. D. Katz, hep-lat/0106002 (JHEP 03 (2002) 014)
- partition function with multi-parameter reweighting

$$Z(\alpha) = \int \mathcal{D}\phi \exp[-S_{bos}(\alpha_0, \phi)] [\det M(\phi, \alpha_0)]^{n_f/4}$$
  
$$\{\exp[-S_{bos}(\alpha, \phi) + S_{bos}(\alpha_0, \phi)] [\det M(\phi, \alpha) / \det M(\phi, \alpha_0)]^{n_f/4} \}$$

we measure fractional powers of the complex determinants

⇒ choose among the possible Riemann-sheets

- a. gauge fix to  $A_0 = 0$  on all but the last timeslice
- b. multiply the j-th row/column by  $e^{\pm j\mu}$
- c. rearrange the columns of the matrix
- d.  $L_{t}$ -2 Gauss elimination step gives a  $6L_{s}^{3} imes 6L_{s}^{3}$  matrix

$$\det M(\mu) = e^{-3V\mu} \prod_{i=1}^{6L_s^3} (e^{L_t\mu} - \lambda_i)$$

 $\Rightarrow$  gives Z for "arbitrary"  $\mu$  and  $\beta$ 

### Lee-Yang zeros of the partition function

C.N. Yang and T.D. Lee, Phys. Rev. 87, 404 (1952)

ullet distinguish between a crossover and a  $oldsymbol{1}^{st}$  order PT

 $1^{st}$  order PT: free energy  $\propto \log Z(\beta)$  non-analytic PT appears not at finite V, but only at  $V \rightarrow \infty$  Z has zeros even at finite V, at complex parameters  $(\beta)$  Re $(\beta_0)$ , zero with smallest imaginary part: transition point

for  $1^{st}$  order PT: zeros approach the real axis 1/V scaling in the  $V \rightarrow \infty$  limit generates the non-analiticity of the free energy

crossover: zeros do not approach the real axis

• illustration with Lee-Yang zeros in  $V \to \infty$  limit the partition function has the form

$$Z = Z_a + Z_b = e^{-Vf_a} + e^{-Vf_b}$$

free-energy densities coincide at  $T_c$ :  $f_b = f_a + \alpha (T - T_c) + ...$ 

$$Z = 2\exp\left[-V(f_a + f_b)(T - T_c)/2\right] \cosh\left[-V\alpha(T - T_c)\right]$$

for complex T values (controlled by  $\beta$ ) there are zeros of Z

$$Im(T_0) = \pi \cdot (n - 1/2)/(V\alpha)$$

with integer numbers of n and  $Re(T) pprox T_c$ 

1/V scaling expected  $V \to \infty$  limit ( $\alpha$  depends on V) for rapid cross-over (no phase transition scenario) finite value is obtained in the  $V \to \infty$  limit





### Endpoint with physical quark masses on $L_t = 4$ lattices

- Z.Fodor, S.D.Katz, hep-lat/0402006, JHEP 04 (2004) 050
- three basic steps of the analysis  $m_s$ =0.25,  $m_{ud}$ =0.0092: physical ones, T=0 measurements show
- a. determine the transition points,  $Re(\beta_0)$ , on  $L_s$ =6,8,10,12  $\beta_c$  as a function of  $\mu$  by the Lee-Yang zeros for  $\mu \neq 0$  overlap improving multi-parameter reweighting 100k,100k,100k,150k configurations, respectively every 50th configuration treated as independent (few thousend)
- b. by inspecting the  $V \to \infty$  limit of  $\text{Im}(\beta_0)$  separate the crossover and the  $\mathbf{1}^{st}$  order PT regions in  $\mu$
- c. connect  $\mu$ =T=0 lattice parameters with observables: physical scale by  $R_0$  (1/403 MeV) and  $m_\rho$  (770 MeV) (3×3000 configurations on 12<sup>3</sup> · 24 lattices)

• separate the crossover and the 1<sup>st</sup> order PT  $V \to \infty$  limit of Im( $\beta_0$ ) as a function of  $\mu$ 



small  $\mu$ : Im( $\beta_0^{\infty}$ ) inconsistent with 0  $\Rightarrow$  crossover increasing  $\mu$ : Im( $\beta_0^{\infty}$ ) decreases  $\Rightarrow$  transition becomes consistent with a 1<sup>st</sup> order PT

endpoint chemical potential:  $\mu_{end} = 0.183(8)$ 

ullet T as a function of the baryonic chemical potential  $\mu_B$ 



ullet lattice result for physical quark masses at  $L_t=4$ 

endpoint:  $T_E=162\pm 2$  MeV,  $\mu_E=360\pm 40$  MeV at  $\mu_B$ =0 transition temperature:  $T_c=164\pm 2$  MeV.  $T/T_c=1-C\mu_B^2/T_c^2$  wit C=0.0032(1)

## $\mu \neq 0$ multi-parameter reweighting with Taylor expansion

C.R. Allton et al., Phys. Rev. D66 074507,'02, D68 014507,'03

$$Z(m,\mu,\beta) = \int \mathcal{D}U \exp[-S_g(\beta,U)] \det M(m,\mu,U) =$$

$$\int \mathcal{D}U \exp[-S_g(\beta_0,U)] \det M(m_0,\mu=0,U)$$

$$\left\{ \exp[-S_g(\beta,U) + S_g(\beta_0,U)] \frac{\det M(m,\mu,U)}{\det M(m_0,\mu=0,U)} \right\}$$

instead of evaulating determinants expand them in  $\mu$  or  $exp(\mu)$ :

$$\ln\left(\frac{\det M(\mu)}{\det M(0)}\right) = \sum_{n=1}^{\infty} \frac{\mu^n}{n!} \frac{\partial^n \ln \det M(0)}{\partial \mu^n} \equiv \sum_{n=1}^{\infty} R_n \mu^n$$

faster than the complete evaluation of the determinants only valid for somewhat smaller  $\mu$  values than the full technique

• trace out the transition points  $\beta_c(\mu)$  in 2 flavour QCD by looking for the susceptibility peaks of Polyakov or  $\langle \bar{\psi} \psi \rangle$  convert it into physical units (T and  $\mu_B$  in MeV)



⇒ curvature is consistent with other results

presence of higher order terems in the Taylor expansion  $\Rightarrow$  uncertainties at small T and large  $\mu$ 

#### radius of convergence

true phase transitions: non-analiticity in the pressure expand around  $\mu$ =0 and look for the convergence radius many terms and infinite volume limit must be taken

radius of convergence shows critical singularity if all coefficients are positive (infinite volume) ⇒ singularity is on the real axis

$$r_n = (c_{2n}/c_{2n+2})^{1/2}$$

spin models: upto 20 different terms in the series some models give good predicitions others fail

comment: convergence radius is always finite there are singularities on the complex plane even in the absence of a critical point:

standard action, 4 terms in the pressure

R.V. Gavai and S. Gupta, PRD71 (2005) 114014 two flavours with a bit large quark masses: m/ $T_c$ =0.1 volume dependence:  $4\cdot L^3$  lattices with L=8–24 Taylor coefficients of the pressure (4 terms, 3 ratios)

 $\Longrightarrow$  critical point at  $\mu_B/T=1.1$  and  $T/T_c=0.95$ 

p4 action, 3 terms in the pressure

C.R. Allton et al, PRD71 (2005) 054508

two flavours with quite large quark masses:  $m/T_c$ =0.4 Taylor coefficients of the pressure (3 terms, 2 ratios)

⇒ analytic behaviour, no critical point

the two groups had different actions and quark masses more terms of the series are needed for a conclusive result

## QCD phase diagram from imaginary chemical potential

P.deForcrand, O.Philipsen, Nucl. Phys. B642 290,'02; B673 170, '03

fermion determinant: real for imaginary chemical potential  $(\mu_I)$   $\Rightarrow$  no sign problem, no need for reweighting

directly obtain the  $(\beta_c, \mu_I)$  transition line analytically continue it to get the physical  $(\beta_c, \mu)$  line

transition line  $(\beta_c, \mu_I)$  is given by the susceptibility-peak

$$\chi = V N_t \langle (\mathscr{O} - \langle \mathscr{O} \rangle)^2 \rangle, \qquad \partial \chi / \partial \beta = 0 \qquad \partial^2 \chi / \partial \beta^2 < 0$$

on finite V the analytic  $\chi(\mu_I, \beta)$  can be measured using the implicitely given  $\beta_c(\mu_I)$  one gets

$$\partial \beta_c / \partial \mu = -i \partial \beta_c / \partial \mu_I$$



curvature is consistent with other results

$$T_c(\mu)/T_c(0) = 1 - 0.500(67)(\mu/\pi T_c)^2$$

• mass dependence in  $n_f$ =3 QCD for the critical endpoint:

$$m_c(\mu)/m_c(0) = 1 + 0.84(36)(\mu/\pi T_c)^2$$

• the equation of state can be determined, too

#### Density of states (DOS) method

#### Constrained simulations:

Force some observable to have a given value this way configurations with all values of the observable present overlap problem not so serious

For any observable:

$$\langle O \rangle = \int dx \langle Of(U) \rangle_x \rho(x) / \int dx \langle f(U) \rangle_x \rho(x)$$

 $\rho,$  the density of states is the constrained partition function for some observable  $\phi$ 

$$ho(x) \equiv Z_\phi(x) = \int \mathcal{D}U \, g(U) \, \delta(\phi-x).$$

#### Possible choices for $\phi$ :

```
\phi=PI (Bhanot et.al, '87; Karliner et.al, '88; Azooiti et.al, '90; Luo, '01; Takaishi, '04) \phi=\Theta (Complex phase) (Gocksch, '88) \Phi=n_q (Ambjorn et. al., '02)
```

#### Results for QCD at large $\mu$

Z. Fodor, S.D. Katz, C. Schmidt, hep-lat/0510087

 $N_f = 4$  staggered QCD on  $6^4$ ,  $8 \cdot 6^3$  lattices



existence of a triple point around  $\mu_qpprox$  300 MeV and T  $\lesssim$  135 MeV

Note,  $L_t$ =6 lattices: smalles T is 73 MeV (if  $m_\rho$  fixes the scale)

Mass dependence checked: small T transition point does not depend on pion mass

### Summary, outlook

- critical endpoint in the  $\mu$ -T plane: unambiguous, non-perturbative prediction of the QCD Lagrangian  $\Rightarrow$  important experimental consequences for heavy ion collisions
- lattice QCD at finite  $\mu$  is an old, unsolved problem recent method: overlap improving multi-parameter reweighting presumably good enough to locate the above endpoint
- overlap improving multi-parameter reweighting: standard importance sampling with reweighting in  $\beta$ , m and  $\mu$  maps transition ensemble to a transition ensemble (or hadronic/QGP ones to hadronic/QGP ones)
- can be applied to any number of Wilson or staggered quarks

• T=0 and T $\neq$ 0 simulations in QCD with  $n_f$ =2+1 quarks infinite volume behavior of the Lee-Yang zeros tells the difference between a 1<sup>st</sup> order PT and a crossover

physical quark masses on  $L_t$ =4 lattices: endpoint:  $T_E = 162 \pm 2$  MeV,  $\mu_E = 360 \pm 40$  MeV at  $\mu_B$ =0 transition temperature:  $T_c = 164 \pm 2$  MeV.

- equation of state is obtained at finite temperature (T=0.8 ...  $3 \cdot T_c$ ) and chemical potential ( $\mu_B$ =0...500 MeV)
- ullet several other new ideas and techniques: Taylor expansion in the chemical potential analytic continuation from imaginary chemical potential density of state method for large  $\mu$