Strangeness production (experiment)

Claudia Höhne, GSI Darmstadt

"Strangeness is a vast subject."

F.Antinori, proceedings QM04

motivation

- (SIS), <mark>AGS, SPS,</mark> (RHIC)
- particle yields, spectra, flow, fluctuations, (high-p_t, correlations)
- strangeness production at top SPS energy (158 AGeV)
 - system-size dependence
- energy dependence of strangeness production
- summary

largest amount of data

Motivation

- strange flavor not present at the beginning of the collision: newly produced!
- \rightarrow study provides essential information about physical environment in which strangeness is created
- \rightarrow however, can still be influenced by later interactions (difficult to entangle!)

Claudia Höhne

Data on strangeness

SPS experiments

- NA49 K, ϕ , Λ , Ξ , Ω , (K^*, Λ^*)
- CERES $\phi, \Lambda, (K)$
- WA97/NA57 K, Λ , Ξ , Ω

AGS experiments

• E-802, E-859, E-866, E-891, E-895, E-896, E-917,... Κ, Λ, Ξ

... list not exhaustive, mainly indicates what I used for this talk

central Pb+Pb collisions at 158 AGeV

hadron production in central PbPb

spectra at central Pb+Pb

kinetic freeze-out from analysis of pt-spectra

* [Schnedermann, Sollfrank, Heinz, Phys. Rev. C48, 2462 (1993)]

spectra at central Pb+Pb (II)

• earlier freeze-out of multi-strange particles?

spectra at central Pb+Pb (III)

hydrodynamical model with transversely expanding emission source, parameters: freezeout temperature T_f, transverse flow velocity β_s at the surface linear velocity profile $\beta_t(r) = \beta_s r/R$

Claudia Höhne

Λ -flow

- substantial elliptic flow of Λ

Λ -flow (II)

- smaller than for pions
- similar to protons
- \rightarrow baryon/ meson effect similar to RHIC?

Future plans: study v_2 of K_S^0 , Ξ ?

∲-meson

discrepancy between NA49 and NA50 in yield and temperature for the ϕ meson in central Pb+Pb collisions at 158 AGeV

Claudia Höhne

φ-meson (II)

φ-meson (III)

E. Scomparin, NA60, QM05

centrality dependent Pb+Pb collisions at 158 AGeV and

central collisions of systems with smaller A

size dependence of s-production

- increase of s-production with system size
- s-hierarchy

Claudia Höhne

size dependence of s-production (II)

Claudia Höhne

size dependence of s-production (III)

quantitatively in disagreement with

thermal models assuming $V=V_0 \cdot N_{part}/2$

qualitatively explained by release of canonical s-suppression in large volumes

Transverse mass spectra

- extract parameters for kinetic freezeout from spectra
- \rightarrow earlier kinetic decoupling in peripheral collisions compared to central ones

energy dependence of s-production

particle yields

Phase diagram

fluctuations

- dynamical fluctuations of the K/ π ratio increasing towards lower energies
- p/π due to resonance decays, reproduced by UrQMD
- continuous rise? maximum at lower SPS energies? (acceptance effects?)
- \rightarrow Energy dependence needed for larger range!

(Anti-)baryon production

- strongly decreasing \overline{B}/B ratio increasing baryon density!
- puzzle: $\overline{M/p}$ ratio > 1 strong \overline{p} absorption?

relative s-production

- maximum of relative strangeness production at 30 AGeV
- change from baryon to meson dominated matter
- s-production mechanism different in hadronic / partonic scenario

s-production

energy dependence of s-production weakens at ~30 AGeV

extrapolated (isospin symmetry (K), hadron gas model (Ξ,Ω), empirical factor (Σ^{\pm}))

π -production

energy dependence of π production changes at ~30 AGeV

relative s-production (II)

maximum in relative strangeness production at ~30 AGeV

saturation for higher energies

 not explained by hadron gas models although the general feature is captured (baryon → meson dominated system)

• neither by UrQMD, HSD [E.L. Bratkovskaya et al., PRC 69, 054907 (2004)]

predicted for a phase transition [Gazdzicki, Gorenstein, Acta. Phys. Polon. B30, 2705 (1999)]

spectra

Transverse-mass spectra (II)

energy dependence of <m_t> changes at lower SPS energies

seen for pions, kaons, protons and their antiparticles

Transverse-mass spectra (III)

not explainable by rescattering, Cronin effect from transport models (UrQMD, HSD, not shown)
[Bratkovskaya et al., PRC 69, 054907 (2004)]

 \rightarrow early prehadronic/ partonic pressure needed!

• consistent with assuming a 1st order phase transition: change of EOS? [Van Hove, PLB 118, 138 (1982); Gorenstein et al., PLB 567, 175 (2003)] T* inverse slope parameter of kaon p_t-spectra

centrality dependent Pb+Pb collisions at 40 AGeV and

central collisions of systems with smaller A

size dependence of s-production

- s-enhancement larger for central collisions compared to 158 AGeV
- increase with N_{wound} steeper than at 158 AGeV (s=1 "slower" saturation)
- s-hierarchy

size dependence of s-production (II)

Claudia Höhne

size dependence of s-production (III)

trend continues towards AGS:

 \bullet change from fast increase with saturation at rather low N_{part} to linear increase

increasing differences
 between different collision
 geometries: central ↔
 peripheral

- increasing s-enhancement compared to p+p
- RQMD: linear increase of relative s-production with centrality expected from hadronic rescattering

[Wang et al. PRC 61 (2999) 064904]

Claudia Höhne

Summary

- (selected) overview on strangeness production from AGS, SPS experiments
- "most" of the particles are strange: understanding strangeness production → learn about "bulk" hadron production
- particle yields/ ratios well described by (~) chemically equilibrated hadron gas for smaller systems take smaller hadronization volume into account (properly !)
 → strangeness enhancement due to release of canonical s-suppression interesting: change of "shape" of s-increase with centrality for lower energies!
- distinct features observed in energy dependence of (strange) particle production maximum in relative s-production at ~30 AGeV step-like structure in <m_t>-values in SPS energy range
- strong common transverse flow: earlier kinetic decoupling in peripheral Pb+Pb? earlier decoupling of Ω in central Pb+Pb?
 "φ-puzzle" solved: no difference between hadronic and leptonic decay channel elliptic flow of Λ
 K/π fluctuations

high-p_t phenomena

- saturation of R_{CP} for high p_{t}
- \bullet no Cronin enhancement for mesons at higher $\ensuremath{\textbf{p}}_{\ensuremath{t}}$
- baryon meson difference
- \rightarrow enhancement of the baryon/meson ratio at high p_t

chemical / kinetic freeze-out

• "earlier" freeze-out consistent with results from hadron gas model fits to smaller systems and radial-flow ("blast-wave") fits to p_t-spectra

Claudia Höhne