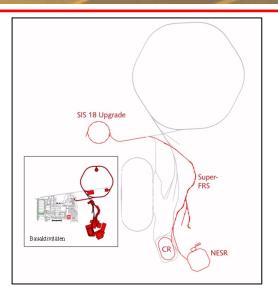
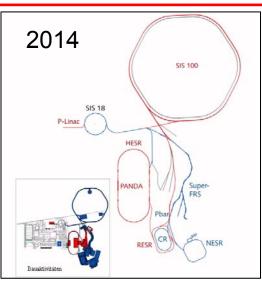
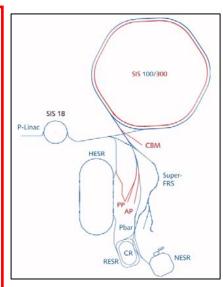

SIS100 System Design




GSI/FAIR Accelerator Facility

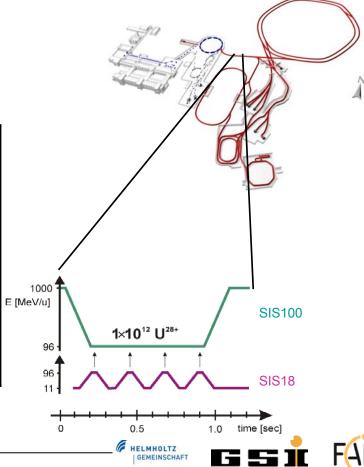


FAIR Uranium Intensity (staged realization)

Stage 1 (FAIR startversion) Stage 2

Stage 3

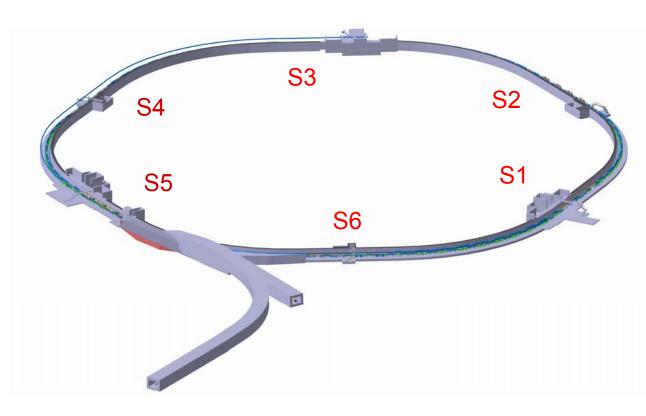
	• •	•		
Uranium				
SIS18	SIS18 SIS100			
2 x 10 ¹⁰ /cycle (U ⁷³⁺)	2 x 10 ¹⁰ /cycle (U ⁷³⁺) 5 x 10 ¹¹ /cycle (U ²⁸⁺)			
Slow				
1.1 x 10 ¹⁰ /s	1.5 x 10 ¹¹ /s	3.5 x 10 ¹¹ /s		
5.4 x 10 ¹⁰ /s	3.5 x 10 ¹¹ /s	not foreseen		



Beam Parameters SIS18/SIS100

SIS18	Protons	Uranium
Number of ions per cycle	5 x 10 ¹²	1.5 x 10 ¹¹
Initial beam energy	70 MeV	11 MeV/u
Ramp rate	10 T/s	10 T/s
Final beam energy	4.5 GeV	200 MeV/u
Repetition frequency	2.7 Hz	2.7 Hz

... and all other ion species


SIS100	Protons	Uranium	
Number of injections	4	4	
Number of ions per cycle	2.5x 10 ¹³ ppp	5 x 10 ¹¹	
Maximum Energy	29 GeV	2.7 GeV/u	
Ramp rate	4 T/s	4 T/s	
Beam pulse length after compression	50 ns	90 - 30 ns	
Extraction mode	Fast and slow	Fast and slow	
Repetition frequency	0.5 Hz	0.7 Hz	

Technical Subsystems

Sixfold Symmetry

- Sufficiently long and number of straight sections
- Reasonable line density in resonance diagram
- Good geometrical matching to the overall topology

- S1: Transfer to SIS300
- S2: Rf Acceleration (Ferrite loaded)
- S3: Rf Acceleration (Ferrite loaded)
- S4: Rf Compression (MA loaded)
- S5: Extraction Systems (slow and fast)
- S6: Injection System plus
 RF Acceleration and
 Barrier Bucket

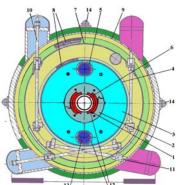
The SIS100 technical subsystems define the length of the straight sections of both synchrotrons

Two Stage Synchrotron SIS100/300

1. High Intensity- and Compressor Stage

SIS100 with fast-ramped superconducting magnets and a strong bunch compression system.

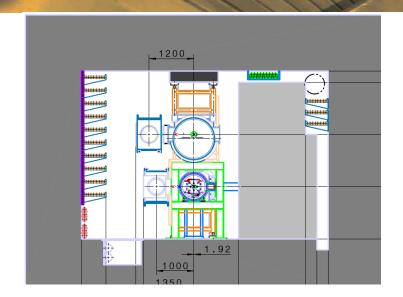
Intermediate charge state ions e.g. U²⁸⁺-ions up to 2.7 GeV/u Protons up to 30 GeV


$$B\rho = 100 \text{ Tm} - B_{max} = 1.9 \text{ T} - dB/dt = 4 \text{ T/s (curved)}$$

SIS300 with superconducting high-field magnets and stretcher function.

Highly charges ions e.g. U⁹²⁺-ions up to 34 GeV/u Intermediate charge state ions U²⁸⁺- ions at 1.5 to 2.7 GeV/u with 100% du

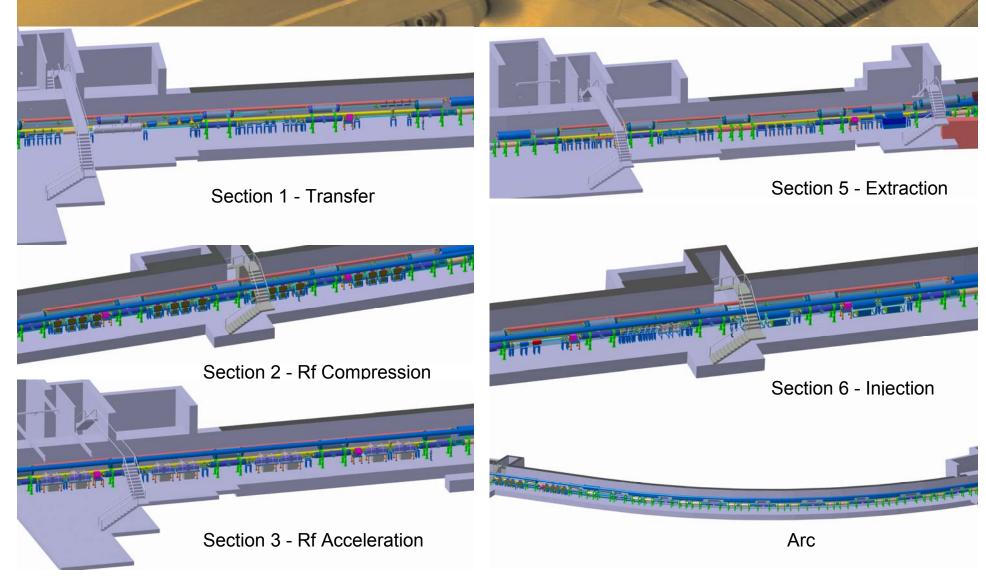
$$B\rho = 300 \text{ Tm} - B_{max} = 4.5 \text{ T} - dB/dt = 1 \text{ T/s (curved)}$$



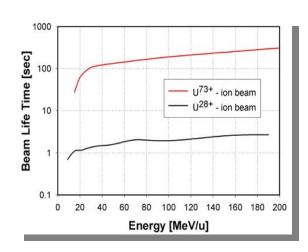
System and Ion Optical Design

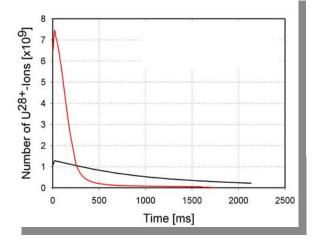
Realisation of two-stage SIS100/SIS300 concept in one tunnel is challenging:

- Geometrical matching of both synchrotrons with different lattice structures (Doublet and FODO) and different magnet technologies (superferric and cosθ)
- Ratio between straight section length and arc length with fixed circumference defined by the warm straight section requirements of SIS100


- Fast, slow and emergency extraction in one short straight and precisely at the same position, with the same angle and fixed distance between the SIS100 and SIS300 extraction channel
- Vertical extraction of SIS100 bypassing SIS300 (on top of SIS100)
- Transfer between SIS100 and SIS300, 1.4 m difference, many geometrical constraints

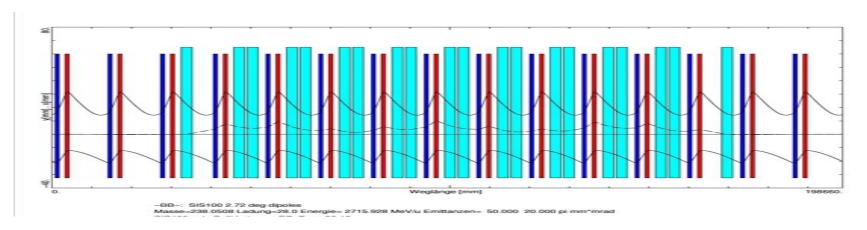
Straight Sections and Arc




Ionization Beam Loss and Dynamic Vacuum

Main Issue for the SIS100 System Design:

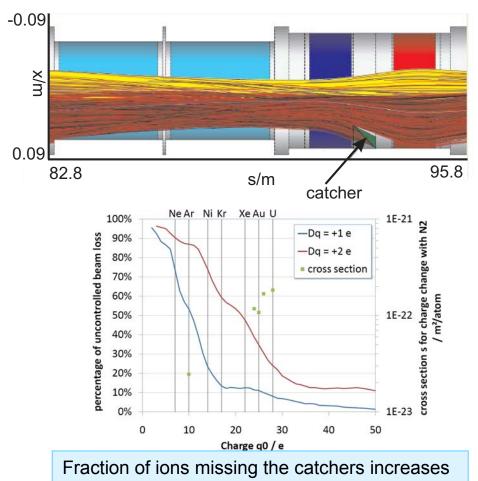
- Life time of U²⁸⁺ is significantly lower than of U⁷³⁺
- Life time of U²⁸⁺ depends strongly on the residual gas pressure
- Ion induced gas desorption (η≈ 10 000) increases the local pressure
- Beam loss increases with intensity (dynamic vacuum)

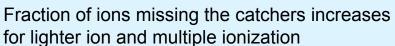

Intermediate Charge State Heavy Ion Operation

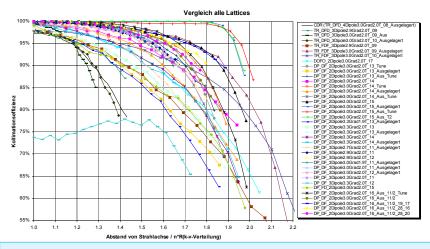
- Optimized lattice for peaked distribution of ionization beam loss
- Catcher system for ionization loss control with low desorption yield material
- Strong distributed pumping system
 (sufficient area and sufficiently cold (actively cooled) vacuum chambers)
- Long term pumping after built up of stacks of monolayers (cryogenic surfaces)
- Infinitely refreshable (e.g. in a shut downs)
- Low systematic beam loss to prevent initial pressure bumps
- Low initial static pressure with a small amount of heavy components (warm sections determine the average, initial pressure)
- Fast ramping and short cycle times (for a fast decrease of cross sections)

Lattice Characteristics

- Maximum transverse acceptance (minimum 3x emittance at injection)
 at limited magnet apertures (problems: pulse power, AC loss etc.)
- Vanishing dispersion in the straight sections for high dp/p during compression
- Low dispersion in the arcs for high dp/p during compression
- Sufficient dispersion in the straight section for slow extraction with Hardt condition
- Shiftable transition energy (three quadrupole power busses) for p operation
- Sufficient space for all components and efficient use of space
- Enabling slow, fast and emergency extraction and transfer within one straight.
- Peaked distribution and highly efficient catcher system for ionization beam loss





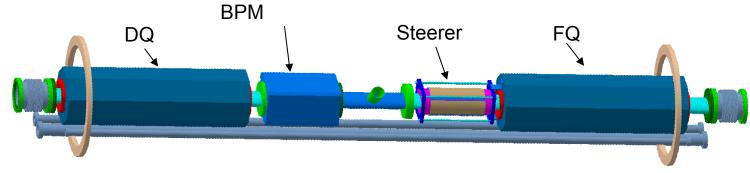


Charge Separator Lattice for Ionization Loss

New lattice design for intermediate charge state heavy ion operation with ionization beam loss

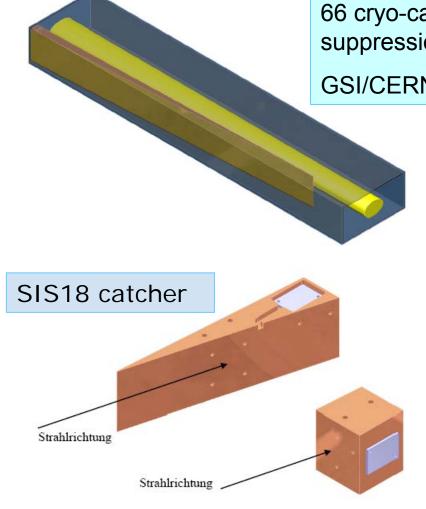
Catching efficiency has been compared for different lattice types as a function of the distance of the catcher from the beam edge (for $U^{28+} > U^{29+}$)

talk by L. Bozyk and H. Kollmus



Principle Cell Layout

Module in the straights



EU FP7- ColMat Cryo-Catcher

66 cryo-catchers foreseen in the SIS100 arcs for the suppression and control of desorption gases

GSI/CERN collaboration - GSI: Work package leader

- Different geometries
- Different temperatur levels
- Test with beam at GSI facility
- Effective desorption yield
- Pumping properties for different residual gas components

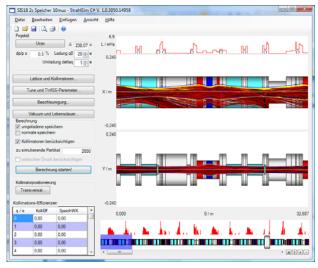
Dynamic Vacuum – STRAHLSIM Code

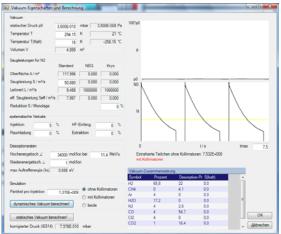
Linear beam optics

Loss pattern due to charge change Collimation efficiency Reads and writes many formats (AML, MIRKO, MAD-X, WinAGILE)

Static Vacuum

p₀, S_{eff}, Vacuum-conductances, NEG coating, cryogenic surfaces, Static residual gas components

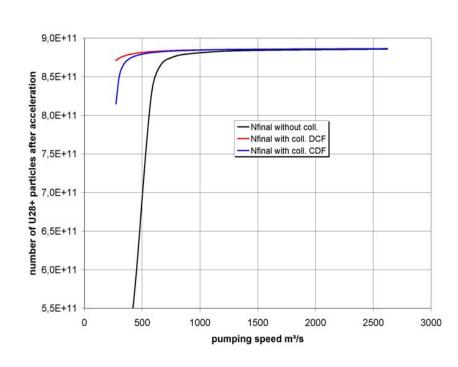

Dynamic (Source of beam losses)

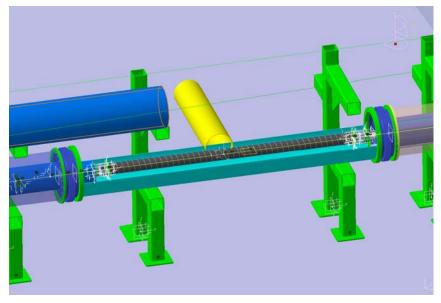

- Synchrotron cycle
- S_{eff cold}(p, T): analytic model, incl. saturation
- S_{eff,NEG}(p, t): Saturation
- Systematic losses (injection, RF capture)
- Projectile ionisation s_{pi}(E, Dq) from Shevelko, Olson, work in conjunction with AP
- Coulomb scattering
- Target ionisation
- Intra beam scattering

Ion stimulated desorption

(Desorption rate η scaled with $(dE/dx)^2$, beam scrubbing included) couples beam losses to pressure rises

Benchmarked with many machine experiments (and at other accelerators)

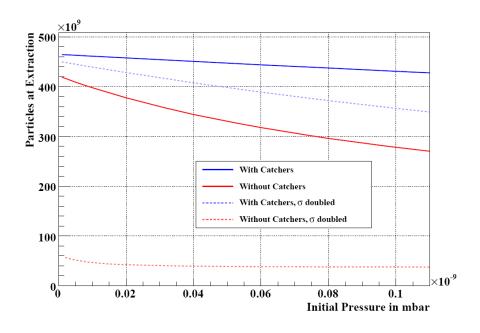




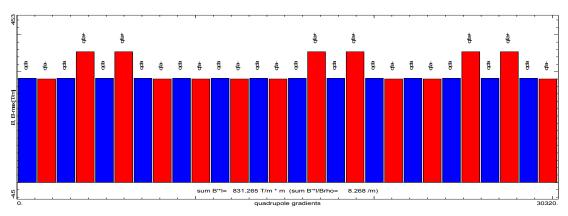
Dynamic Vacuum

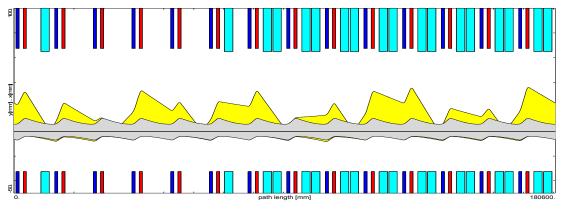
- The UHV system is conductance limited
- Cold surfaces (< 10 K) provide an high effective pumping power suitable to stabilize the pressure in the arc
- Active cooling of magnet chambers plus cooling of drift tube chambers
- In a stable situation the pressure peak in the warm straight sections defines the amount of ionization loss

Cooling of missing dipole beam pipe



Ionisation Beam Loss and Dynamic Vacuum


STRAHLSIM Examples:


Extracted ions as a function of the the static, inital pressure with and withou catcher and with twice the ionization cross section

Optical Setting for Proton Operation

Quadrupole setting with three circuits (two F and one D quadrupole)

Envelops with standard setting (grey) and shifted transition energy (yellow)

Beam:

 $\gamma_{min} = 3,36 (2.2 \text{ GeV})$

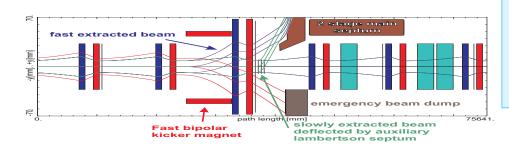
 γ_{max} = 32 (29 GeV)

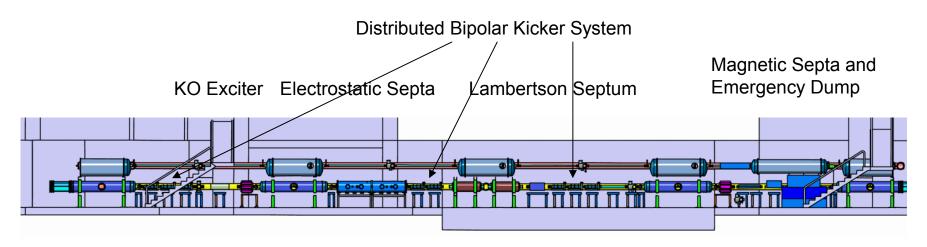
Lattice:

Symmetric: γ_T =17

Proton: $\gamma_T = 44$

No crossing of transition energy γ_T and danger of beam loss

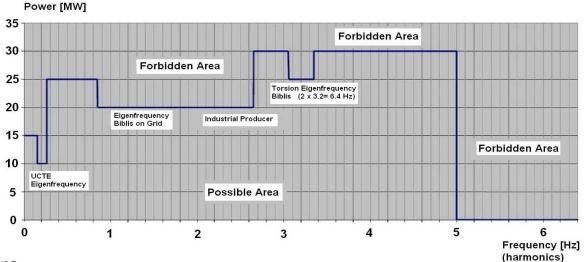



Extraction Systems

SIS100

- Fast extraction towards experiments
- Slow extraction towards experiments
- Fast extraction toward emergency dump
- Fast (vertical) extraction (transfer) towards SIS300

- Cooling test of high power extraction septum in preparation at GSI
- Wire heating of electrostatic septa due to beam load under investigation
- Design study for pulse power generator for bipolar, ramped kicker magnets started
- Prototype for a two stage pseudospark switch under development.


Pulse Power and Power Grid Connection

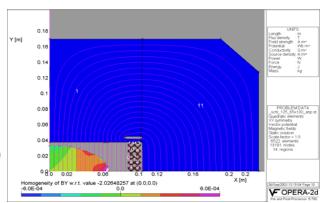
High average intensity and the intermediate charge state, heavy ion operation require fast ramping with high puls power

	Pulse Power	Field Rate
SIS18	+ 42 MW	10 T/s
SIS100sc	± 26 MW	4 T/s
SIS300	± 23 MW	1 T/s
SIS100nc	75 MW	4 T/s

New 110 kV Power Connection

talk by H. Ramakers

Fast Ramped Superferric Magnets


R&D Goals

- Reduction of eddy / persistent current effects at 4K (3D field, AC loss)
- Improvement of DC/AC-field quality
- Guarantee of long term mechanical stability
 (≥ 2.108 cycles)

Activities

- AC Loss Reduction (exp. tests, FEM)
- 2D/3D Magnetic Field Calculations (OPERA, ANSYS, etc.)
- Mechanical Analysis and Coil Restraint (design, ANSYS)
 (>Fatigue of the conductor and precise positioning)

Experimental studies with modified Nuklotron magnets at JINR

talk by P. Schnitzer

Full Length SIS100 Prototype Dipoles

Straight Dipoles

- manufactured by BNG, Würzburg
- manufactured by JINR, Dubna

Curved Dipole

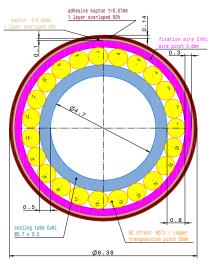
manufactured by BINP, Novosibirks

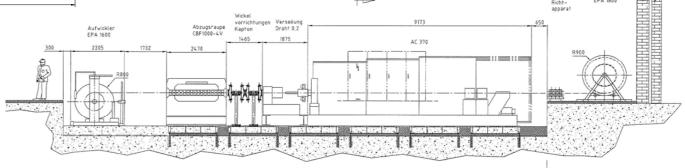
Quadrupole

manufactured by JINR, Dubna

Figure 17 SIS100 curved magnet assembled without vacuum chamber.

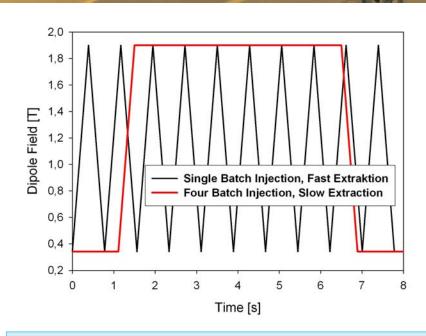
Thin wall (0.3 mm), corrugated, He-cooled UHV chamber

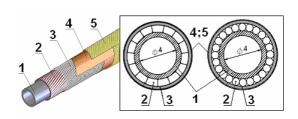




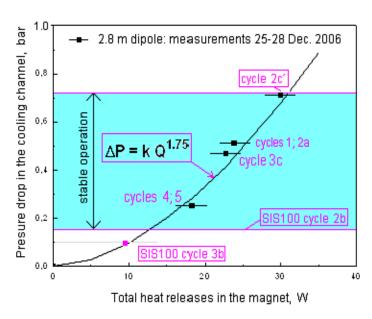
Nuklotron Cable Production at BNG

Second Nuklotron type cable production capability set-up at BNG in Würzburg





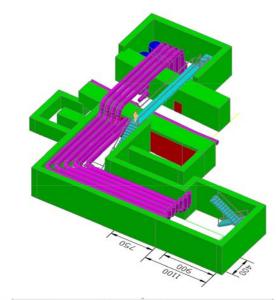
Operation Cycles and Magnet Cooling Limits


- Singel layer coil with low hydraulic resistance
- High current cable
- Active heaters to stabilize the crogenic load

Alternative coil design and high current cable

TABLE II OPERATION CYCLES AND EXPECTED LOSSES

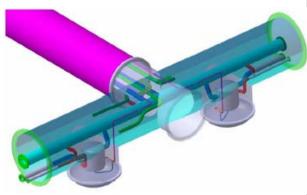
cycle	B _{max} (T)	t _f (s)	cycle period (s)	Q _d (J/cycle)	P _d (W)	Q _q (J/cycle)	P _q (W)
1	1.2	0.1	1.4	35.2	25.2	13.1	9.4
2a	1.2	0.1	1.4	35.2	25.2	13.1	9.4
2b	0.5	0.1	1.0	8.8	8.8	3.3	3.3
2c	2.0	0.1	1.82	89	48.9	24.4	18.9
3a	1.2	1.3	2.6	35.2	13.5	13.1	5.0
3b	0.5	1.0	1.9	8.8	4.6	3.3	1.8
3c	2.0	1.7	3.4	89	26.2	34.4	10.1
4	2.0	0.1	5.0	89	17.8	34.4	6.9
5	2.0	0.1	5.0	89	17.8	34.4	6.9


Cryomagnetic Quadrupole Units

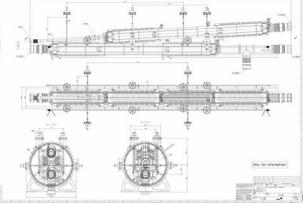
Two standard cells but a large number of different quadrupole modules

Local Cryogenics

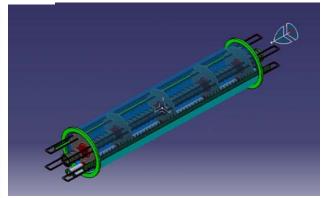
- Feed Boxes
- Feed-in Cryostat
- Current Lead Boxes
- Cold Links
- Cryogenic Bypass Lines
- End Caps
- Measurement Technique
- Special Cryostats ?



Supply concept:


Cold links between on- and underground building

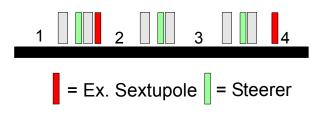
Feed-box underground


Current lead-box on ground

Study feed-in cryostat

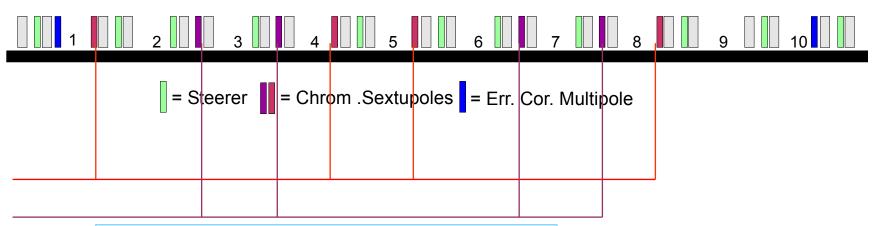
Study on injection/ extraction quadrupole modules

Study on missing cooling cryostat in missing dipole gap



Correction System

SIS 100 Straight


Individual supply:

Steerers (green)

Correction Multipoles (blue)

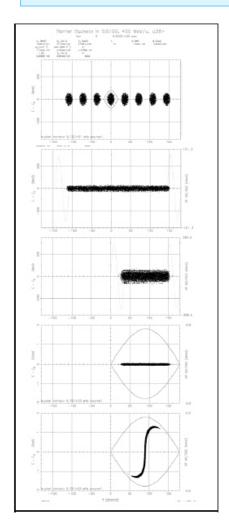
Resonance Sextupoles (bright red)

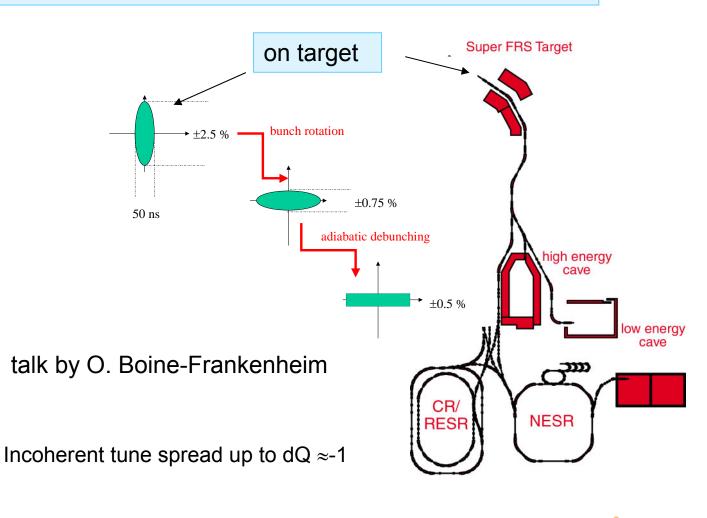
SIS 100 Arc

Chromaticity Sextupoles (red / pink):

2 x 4 sextupoles per arc in series connection

2 arcs in series connection





Rf Cycle for Heavy Ions

Short compressed pulses for optimum target matching and fast cooling in CR

Rf Cycle for Protons

	Bunch pattern	Harmonic numbers	Duration (approx.)
Injection from SIS-18	jection from SIS-18 4 bunches / 6 empty 10		1.1 s
Merging	2 bunches / 3 empty	10→5	0.1 s
Batch compression	2 bunches / 8 empty	5→6→7→8→9→10	0.3 s
Merging	1 bunch / 4 empty	10→5	0.1 s
Acceleration	1 bunch / 4 empty	5	0.4 s

Synchrotron frequency for Rf manipulations at high gamma to low > Rf manipulations for single bunch generation takes to long

Standard scheme for single bunch generation and compression not applicable

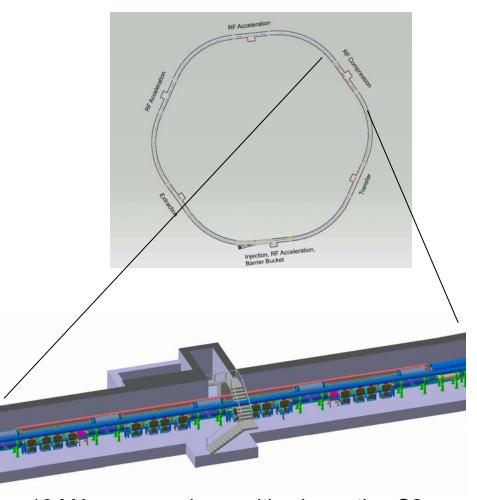

RF Systems Overview

	FBTR	f [MHz]	#	Technical Concept
Acceleration System	h=10 400 kV	1.1–2.7	20 (SIS100) 8 (SIS300)	Ferrit ring core, "narrow" band cavities
Compression System	h=2 640 kV	0.395- 0.485	16	Magnetic alloy ring core, broad band (low duty cycle) cavities
Barrier Bucket System	15 kV	2	2	Magnetic alloy ring core, broad band (low duty cycle) cavities

talk by H. Klingbeil

SIS18 ferrit loaded accel. cavity

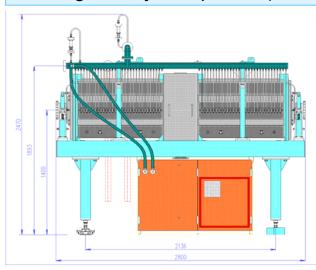
SIS18 MA loaded bunch compression cavity


RF Bunch Compression Section

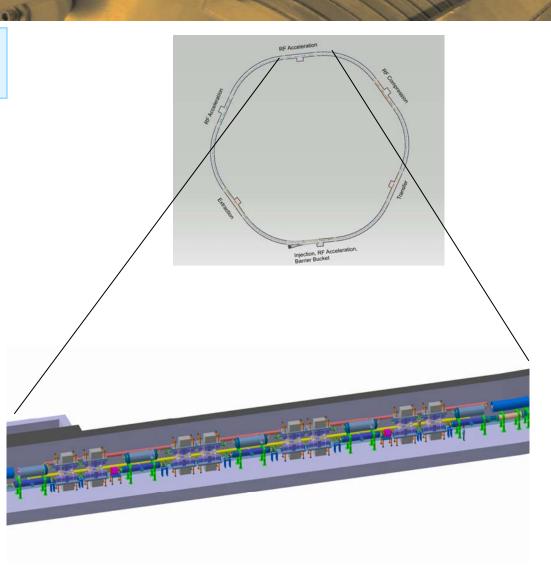
Short pulse (500 μs), high power bunch compressor developed at GSI

World wide MA core material survey

16 MA compression cavities in section S2

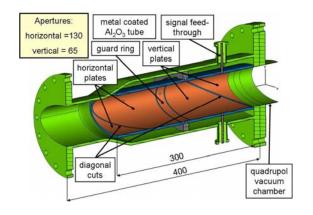


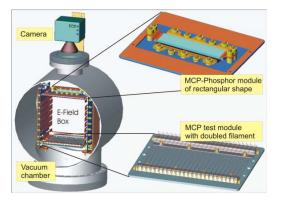
RF Acceleration Sections


Acceleration Cavities:

Design study completed (BINP)

Minimization of shunt impedance: Fast semi-conductor gap switch R&D





Beam Instrumentation

BPM FEM studies on cross talk and resonances

Device Measurement Application

DCCT dc-current stored current, lifetime

GMR-DCCT dc-current for high currents
CCC dc-current for low currents

ACCT Pulsed current injection efficiency

BPM center-of-mass closed orbit & feedback turn-by-turn

lattice functions

Exciter+BPM center-of-mass tune, BFT, PLL Quad. BPM quad. moment BTF, matching

Schottky longitudinal: $\Delta p/p$, cooling transverse: tune, chromaticity

WCM or FCT bunch structure matching, bunch gymnastics

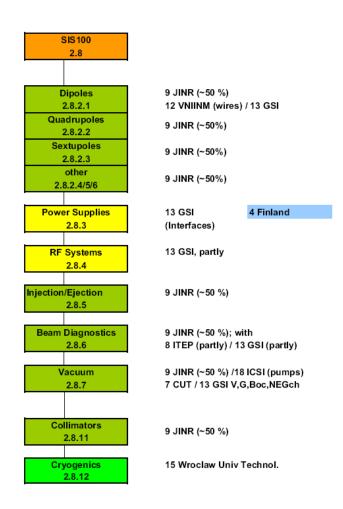
IPM beam profile cooling, matching

BLM beam loss matching, halo, scraper, losses

Grid/Screen beam profile first turn

Wide dynamic range of beam parameters to be measured

Ionization Beam Profile Monitor similar to the present SIS18/ESR development


talk by M. Schickert

Expression of Interests for SIS100 Components

Two EOI meetings on SIS100 inkind contributions in 2008

Summary

- The SIS100 system design has been optimized for the acceleration of intermediate charge state heavy ions, with sufficient flexibility for proton acceleration.
- Major progress has been achieved in the understand and simulation of dynamic vacuum, gas desorption and connected beam loss by charge changing processes.
- The R&D status of the technical subsystems allows starting the final engineering design for all components. There are models, prototypes or running systems which prove the technical feasibility of each SIS100 component.

