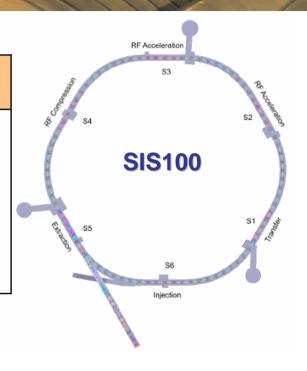
FAIR Machine Advisory Committee Meeting

Beam Diagnostics for SIS100

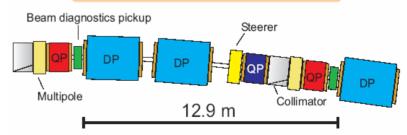
Marcus Schwickert, GSI Beam Diagnostics Department March 3rd 2009

- SIS100 Features and General Concepts
- Overview of Diagnostic Installations
- Functions and Specs of Diagnostic Equipment& Ongoing RnD Projects
- ✗ EoI13i: Data Acquisition for Beam Diagnostics
- Summary



SIS100 Features

SIS100 Parameters


Circum-	Beam rigidity	Beam Energy	Features
ference [m]	[Tm]	[GeV/u]	
1083.6	100	2.7 for U ²⁸⁺ 29 for protons	fast pulsed superferric magnets max. B-field up to B=2 T, max. ramp rate dB/dt=4 T/s, bunch compression to ~60 ns of 5 · 10 ¹¹ U ²⁸⁺ ions, fast and slow extraction, 5 · 10 ⁻¹² mbar operating vacuum

Challenges for Beam Diagnostics

- wide range of beam intensities (up to 5⋅10¹¹ U²²²+/pulse, 2.5⋅10¹³ protons/pulse)
- short (25-100 ns) and long (8 μs) pulse length
- space charge effects
- ★ RF 'gymnastics' (barrier bucket system, bunch compression system)
- **XHV** conditions, installation of BPMs in cryostats

Standard Lattice Cell

General Layout Concepts

Layout Criteria for Beam Diagnostic Devices of FAIR:

***** application of **industrial standards** to maximum extent:

Mechanics: flanges, valves, connectors etc.

Electronics: form factors, bus systems, pinnings, network

- facility-wide standardization, i.e.wherever possible: common realizations of diagnostic devices for all machines!
 - → reduces RnD work
 - → improves maintainability (less administrative effort)
 - → saves time + manpower (e.g. less training for service teams)
 - → reduces spares inventory (ease of exchangeability)
- where applicable, e.g. for actuators, electronic parts:
 Use of commercially available products (COTS), with "second source"

- comprehensive timing concept in collaboration with GSI controls and equipment groups
- ★ clear separation of 'Data Acquisition'-layer as common interface to control system
 - → german Expression-of-Interest No. 13i
- full access to software source code (down to VHDL) is mandatory
- * use of open source instead of proprietary software / operating systems
- decision for FESA (Front-End Software Architecture, CERN) as software standard for data acquisition

Beam Diagnostic Installations of SIS100

Diagnostic Device	Quantity	Measured Parameter	Application
DC Transformer	1	DC current	Stored current, beam lifetime
Novel DC Transformer	1	DC current	Stored current, beam lifetime
Pulse Current Transformer	1	Pulse-current	Injection efficiency
Cryogenic BPM	84	Beam centre-of-mass	Closed orbit, turn-by-turn variations, K-modulation, lattice functions, closed orbit feedback
Exciter+BPM	1	Beam centre-of-mass after excitation	Tune by BTF, tune by noise excitation, PPL tune tracking, tune by Q-kick
Schottky pickup	1	Momentum distribution, transverse Schottky	Δp/p determination, tune, chromaticity
Fast Current Transformer	1	Broadband bunch structure	Longitudinal emittance
Ionization Profile Monitor	1	Beam profile	Transverse emittance, injection matching
Beam Loss Monitor	50	Beam loss	Mis-steering of magnets, Halo detection at scraper, Vacuum induced loss
Scintillation Screen	2	Beam profile	First turn diagnostics
SEM-Grid	6	Beam profile	First turn diagnostics

Beam Current Measurement (DC current)

1 DC-Transformer

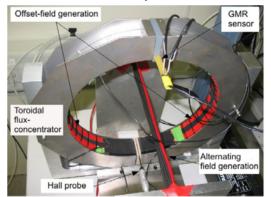
Role

- precise determination of stored and accelerated beam current
- beam lifetime determination and coarse beam loss measurement

Requirements

- ★ for typical beam parameters dynamic range of 10 µA 20 A sufficient
- bandwidth of 10 kHz to measure beam lifetime
- coarse beam loss: data acquisition on ms timescale

Technical Design


commercially available system, e.g. New-PCT

1 Novel DCCT (GMR DC-Transformer)

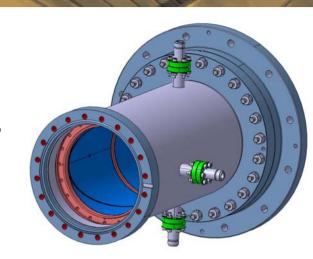
- dc beam current measurement
- especially for high current bunched beams with MHz repetition rate

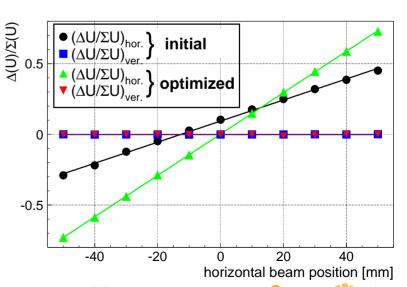
new development necessary, signal of standard DCT disturbed at MHz repetition rate

Ongoing R&D:

- Sensitive GMR magnetic field sensor
- ★ soft-magnetic flux concentrator (amorphous VITROVAC® or CMD® ferrite) with 5mm gap

Beam Position Measurement 1/3


84 Cryogenic Beam Position Monitors


Role

- x precise beam position measurement
- closed orbit control during rf manipulations (bunch compression, acceleration) and different extraction schemes
- use of position data for closed orbit feedback
- mechanical mis-alignment minimized with k-modulation

Requirements

- all BPMs installed in cryogenic regions (quadrupole cryostats)
- **★** large dynamic range (1 μ V< U_{plate}<1.8 kV, mainly due to variation in bunch length)
- ✗ linear cut type BPM is preferred, because:
 - bunch length >> BPM length
 - rel. low bunch frequency: 0.5-2.7 MHz
 - good linearity even for transversally large beams
- mech. stability of ~50 µm required for 0.1 mm accuracy
- good response in frequency range 0.1-100 MHz
- all components suitable for XHV conditions (< 10⁻¹¹ mbar)

Beam Position Measurement 2/3

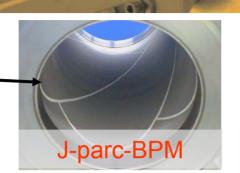
Technical Design

Aperture:

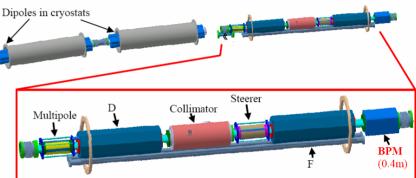
135 mm

horizontal

plates


diagonal

cuts

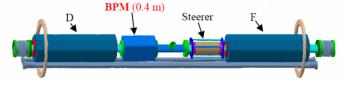

- metal coated Al₂O₃
- matching transformer inside cryostat

Metal coated

Al₂O₃ tube

BPM Location in SIS100 Arcs

guard ring quadrupol vacuum chamber BPM Location in Straight Sections


signal feed-

through

400

vertical

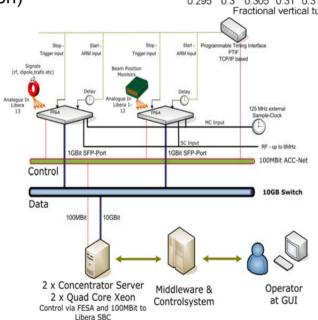
plate

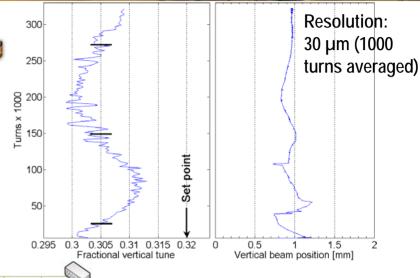
Ongoing R&D:

pick-up design, cryo test of components (feedthroughs, matching transformers), FEM-Simulations

Beam Position Measurement 3/3

Data Acquisition


Digital baseband processing:


- Digitization: 4 ADCs, 125 MSa/s, 14 bit e.g. by Libera (Instrumentation Technologies)
- Sample-synchronous processing with Xilinx FPGA
- 256 MB RAM, 1.25 Gbit interface
- Algorithm design for FPGA (noise reduction, integration-gate, baseline reconstruction)

Ongoing R&D

- closed orbit feedback integration (FZ Jülich, DELTA Dortmund)
- ★ pre-amp development RF amplifier bandwidth: 0.1-100MHz ampl./att. 120 dB dynamics

Libera test: SIS18 BPM upgrade

- ★ 12 BPMs
- 2 concentrator servers
- * 10 GBit switch
- DAQ software: FESA implementation

HELMHOLTZ

Longitudinal Diagnostics

1 Fast Current Transformer

Role

- control of longitudinal matching of space charge limited beams
- * investigation of long bunches at injection and barrier bucket formation
- investigation of short bunches during bunch rotation
- * tomographic reconstruction of longitudinal phase space evolution
- **★** sensor for phase stabilization of accelerating rf → interface to rf system

Requirements

bandwidth of 5 kHz up to 600 MHz

Technical Design

commercially available product (Bergoz Instrumentation)

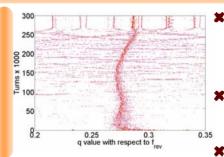
Ongoing R&D

- prototype purchased for tests
- * tests with beam at SIS18 in 2009
- FESA test project with 500 MSa/s ADC

www.bergoz.com/products/FCT/d-fct.html

Schottky- / BTF- / Tune-Diagnostics

Schottky Role


- long. Schottky to measure momentum distribution without affecting the beam
- study dynamic effects, e.g. rf capture process
- transv. Schottky to determine tune value and incoherent tune spread

Requirements

- no excitation needed
- MHz-Schottky PU (standard)
- GHz-Schottky PU for impedance measurements, space charge effects

BTF / Tune

- * tune determination: measurement of the beam transfer function (BTF) using weak beam excitation
- dynamic tune determination during acceleration ramp: RF-exciter for broadband noise excitation (same hardware as for the BTF)
- sensitive tune measurement by direct digitization

- monitoring of tune, chromaticity, lattice functions, coupling coefficients by coherent beam excitation with fast kicker
- measurement of single kicked bunch: BPM read out on a bunch-by-bunch basis
- study space charge effects

Technical Design

- two pairs of capacitive pickup electrodes
- broadband (200 MHz) pre-amplifier
- digital real-time spectrum analyzer (min. 5 GSa/s)
 - novel Schottky pick-up Ongoing R&D: design (TU Darmstadt)

- measurements with broadband noise excitation and fast kicker excitation: special mode of BPM digitization system
- ***** BTF: network analyzer
- study on tune and chromaticity feedback systems (TU Darmstadt)

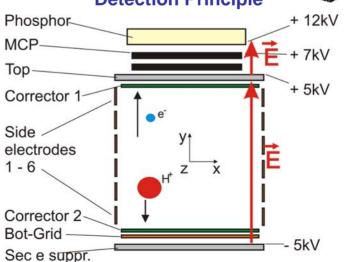
Beam Profile Measurement 1/3

1 Ionization Profile Monitor

Role

- measurement of transverse beam profile
- emittance determination, evolution, changes due to rf manipulations
- detection of emittance growth
- **★** injection matching and fast profile changes measured in turn-by-turn mode

Requirements


Electrons or ions detection:

- **x** E-field (extraction)(E≈±50 V/mm, 1% inhomog.)
- B-field (guidance) (B≈30 mT, 1% inhomog.)

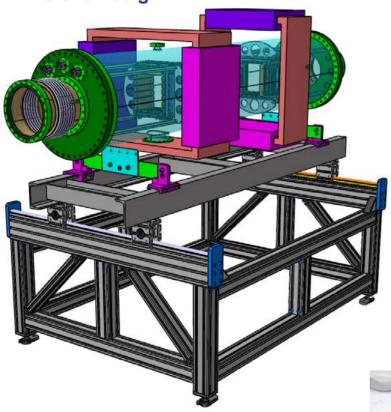
Two photo-detector types:

- **High spatial-resolution mode:** CCD readout (100 μm resol.)
- **x Turn-by-turn mode:** array of photo-multiplier tubes (~1 µs time resolution)

Detection Principle

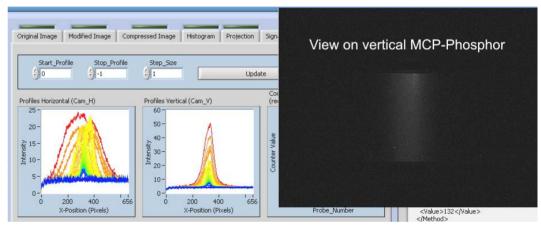
Existing

ESR-Installation



Beam Profile Measurement 2/3

Technical Design


SIS18 Design

* studies on possible permanent magnet layout for guiding B-field (U Moscow)

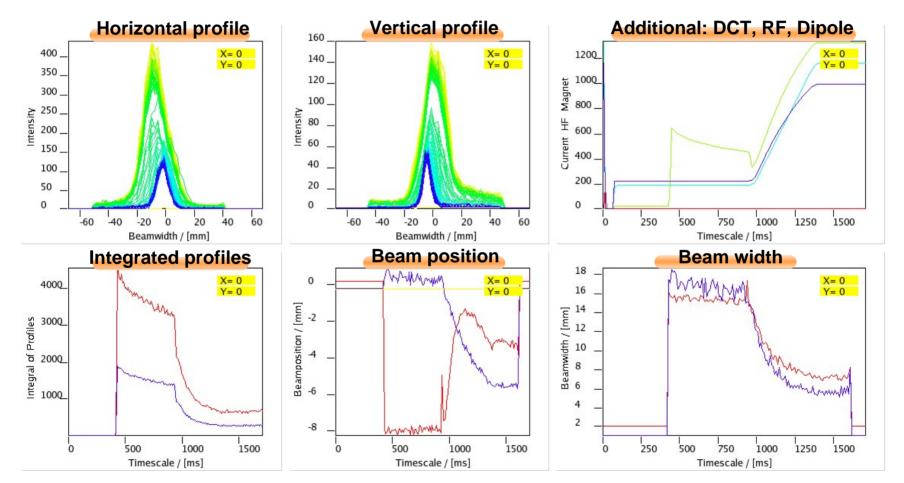
Ongoing R&D

*** detector tests** with beam at COSY (FZ Jülich)

- * fast readout for turn-by-turn mode:
 - development of digitizer board for PMT array (ITEP, Moscow)

- FPGA, DSP electronics for high time resolution:

1 profile each 100 ns



Beam Profile Measurement 3/3

Measurement example using the existing SIS18 residual gas monitor

Ar18+, 350MeV/u @ flat top, losses after injection & accel. (t=0,9s), beam shift @ accel. start

Beam Loss Monitor

50 Beam Loss Monitors

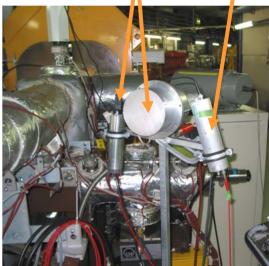
Role

- ✗ localize beam losses during adjustments and machine tuning
- optional: interlock generation / machine protection
- mounted at critical locations, e.g scrapers, collimators, septa...

Requirements

- scintillators: large sensitivity and precise timing properties, but only relative measurement, for slow extraction
- ionization chambers for absolute dose determination at fast extraction

Technical Design


- tripod outside vacuum
- active volume 20x20x50 mm³
- ionization chamber: length 800 mm, diam. 100 mm

Ongoing R&D

tests at SIS18 with CERN-LHC BLMs

scintillators

First Turn Diagnostics (intercepting)

6 SEM-Grids

Role * Monitor beam position and profile at each sector (+ beam stopper)

2 Scintillation Screens

■ Beam position and profile at ½ turn and first turn positions

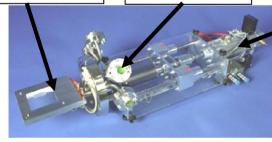
commissioning and troubleshooting

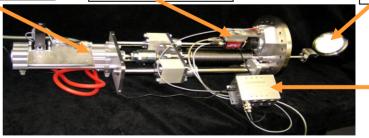
Requirements

- low detection threshold
- XHV conformity / thermal stability

- **x** adequate screen material, e.g. YAG, Gadox
- large active area / small optical decay time
- image acquisition in triggered mode

Technical Design


wire grid, e.g. El 64 wires/plane feed


Electrical feed-through

pneumatic actuator

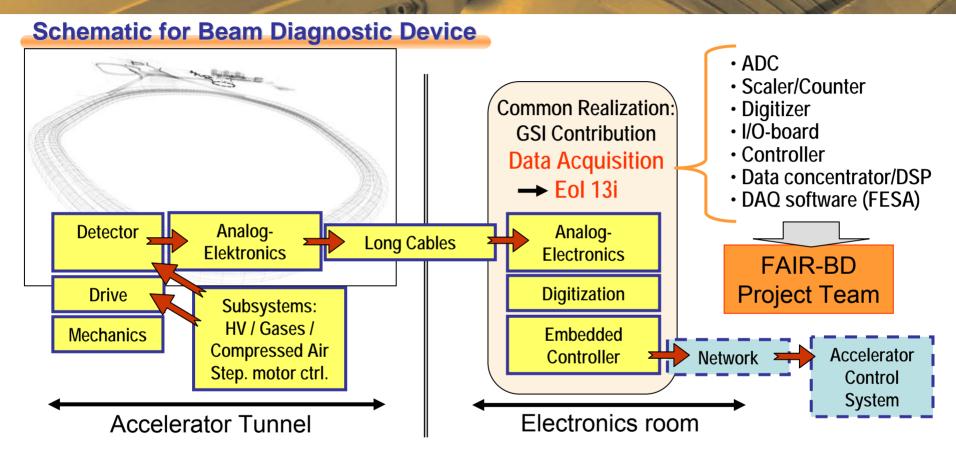
CCD-camera (e.g. FireWire)

scintillator (Gd₂O₂S:Tb)

optical iris control

Ongoing R&D:

development of new read out electronics


- studies on scintillating materials
- tests of ccd systems and iris control

Eol 13i: Data Acquisition for BD

- NO common scheme valid FOR ALL ~30 different beam diagnostic systems
- Ongoing R&D:
- FESA test installation at GSI
- collaboration with CERN-CO / -BI
- 2 FESA test projects: (SIS18-BPM upgrade, Fast Current Transformer)

Summary / Outlook

- Overview of concepts and beam diagnostic devices for SIS100
- Specifications, special requirements and technical solutions for beam diagnostic devices
- Many diagnostic devices subject of ongoing RnD projects, examples:
 - novel GMR sensor (UAS Wiesbaden)
 - cryogenic pick-up design / feedback systems (TU Darmstadt, FZ Jülich, DELTA Dortmund)
 - ionization profile monitor: mechanical prototype (EU FP6, FZ Jülich)
 layout of fast readout electronics (ITEP Moscow)
- ★ Eol #13i: Data acquisition for FAIR beam diagnostics as common interface
- **★ FAIR-BD project team** now in operation
- Outlook:
- start of interdisciplinary working groups, e.g. 'operational scenarios'
- Targets + project-wide sustainable solution for missing manpower (e.g. 'project associates')
 - build-up of GSI infrastructure (procurement, human resources...)
 - low coverage of beam diagnostic components by EoIs (in total 2)
 - Risks missing mandate for Expressions-of-Interest (GSI, other partners)
 - obscurity of funding schemes

Thank you for your attention.

