

Forward Physics and Detectors

A. Caldwell, Max Planck Institute for Physics

Physics motivation (examples):

- 1. The total photoproduction cross section
- 2. The transition from photoproduction to DIS
- 3. Longitudinal structure function F_L
- 4. High-x structure functions
- 5. Photoproduction of VM (J/psi)

Detector study, examples of performance

Hadron-Hadron Cross Section

•Total cross section not understood from QCD – phenomenological models based on Regge Theory

• EIC/ENC could provide high precision photoproduction measurements in new kinematic region

- Of great interest for interpretation of cosmic ray data
- eA behavior would be very interesting

HERA: total photoproduction cross section

ZEUS prel.

EIC-ENC: would need to measure the scattered electron. Minimum cuts on the hadronic state produced.

HERA Discovery!

The rise of the parton densities (and of F_2) with decreasing x is strongly dependent on Q². Implies very large density of partons in the proton when probe at high energies !

Small fraction of HERA data

The rise at small **x**

Parametrize:

Electron scattered at very small angle

Transition region

5

Does the rise in F_2 set in at the same Q^2 in eA and in eP ?

Measuring $\mathbf{F}_{\mathbf{L}}$

$$\sigma_{r} = \left(\frac{2\pi\alpha^{2}Y_{+}}{xQ^{4}}\right)^{-1} \frac{d^{2}\sigma}{dxdQ^{2}} = \left[F_{2}(x,Q^{2}) - \frac{y^{2}}{Y_{+}}F_{L}(x,Q^{2})\right] \text{ Small Q}^{2}, \text{ ignore } F_{3}$$

 F_L gives more direct access to gluons than F_2

F_L EIC vs. Other DIS Facilities

Small-x is not the only frontier ...

There is limited data on cross sections at high-x and high Q²

BCDMS has measured F₂ up to x=0.75

H1, ZEUS have measured F_2 up to x=0.65

The PDF's are poorly determined at high-x. Sizeable differences despite the fact that all fitters use the same parametrization xq∝(1-x)^η. Is it possible to check this?

May 30, 2009

HERA Kinematics

Need to measure hadronic jets to highest possible rapidity. Note, cannot reconstruct x accurately from electron information.

May 30, 2009

Exclusive Processes

impact parameter of ~0.6 fm. smaller than the proton charge radius of 0.870 [PDG] ...

 $Q^{2}+M^{2}(GeV^{2})$

Exclusive Processes

A long list of processes have been measured:

$$eP \rightarrow ePV \quad V = \rho, \omega, \varphi, J/\psi$$

$$eP \rightarrow eNV \quad V = \rho, \omega, \varphi, J/\psi$$

N is low mass system

and
$$eP \rightarrow eP\gamma$$
 QCD

Elastic Scattering

Ideal process to measure hadronic structure

Detector requirements:

- forward electron spectrometer
- forward p,A reconstruction (veto of dissociation)
- precision tracking in central detector

Accelerator requirements:

- substantial component free region around IP
- small P_T of beam particles (< few MeV)

EIC/ENC

- 1. Precise scan of the transition region between partonic & hadronic behavior. Something changes there can we understand it ? Need acceptance in electron direction.
- 2. Make precision measurements at high-x to understand the valence quarks. Need acceptance in proton direction.
- 3. Make F_L a highlight of the program much more direct access to gluon density than via F_2 scaling violations. Needs high precision measurements good resolution, small systematics. Note: F_L can also be derived from comparison with HERA, fixed target.
- 4. Focus on clean, high acceptance diffractive and elastic scattering measurements. Needs high efficiency rejection of proton/ion dissociation.
- 5. Photoproduction measurements benefit strongly from measurement of forward scattered electron.

May 30, 2009

Full-acceptance detector studied for HERA-3, eRHIC

See: HERA3 Lol and I. Abt, A. Caldwell, X. Liu and J. Sutiak, arXiv:hep-ex/0407053

Conceptual Beam–Line

10:1 scale

The focus of the detector was on providing complete acceptance in the low Q² region where we want to probe the transition between partons and more complicated objects.

Tracking acceptance in proton direction

Accepted = 4 Si stations crossed.

Very large gain also for vector meson, DVCS studies. Can measure cross sections at small, large W, get much more precise determination of the energy dependence.

May 30, 2009

Probing the parton-hadron transition

May 30, 2009

Work in progress, H. Kowalski, A. Caldwell

Summary

There is tremendous physics potential for measurements in the forward electron and ion/proton direction.

Dipole magnetic field in extended region, considerable free space along beamline, precision tracking near the beamline will be important.

Some first detector concepts have been discussed – more work is needed.