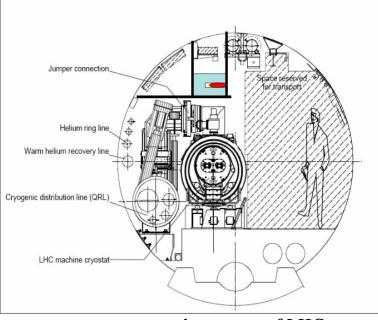

Status of LHeC Accelerator Design Studies

Uwe Schneekloth DESY

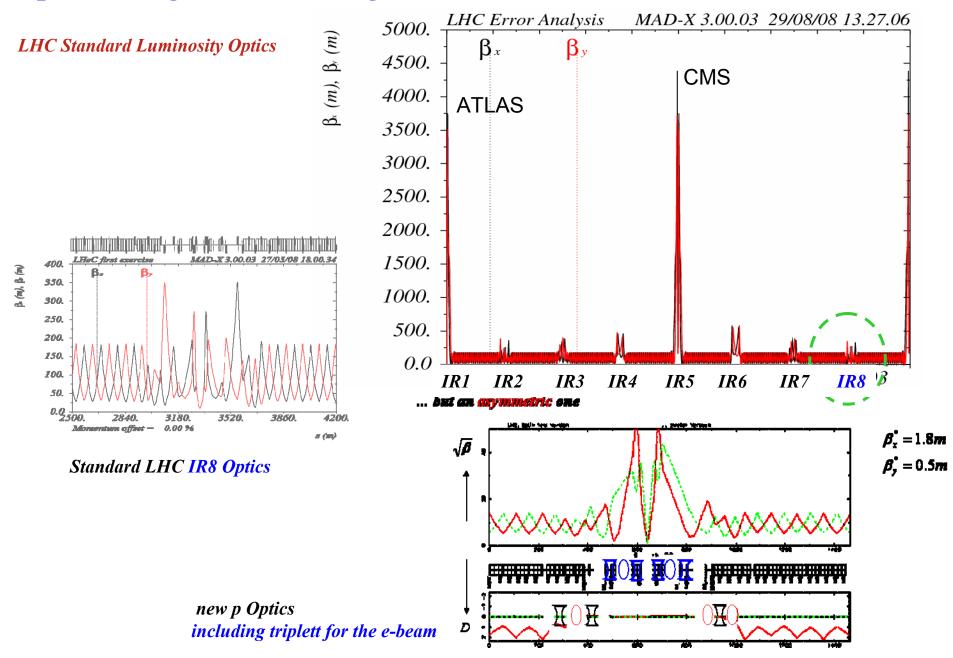
ENC/EIC Workshop GSI Darmstadt May 2009



Goal: Technical Design of the three Alternatives CDR within a Year

General Statement: Whatever we do ... the fundamental layout of the LHC delivers an enormous potential for e/p Luminosity

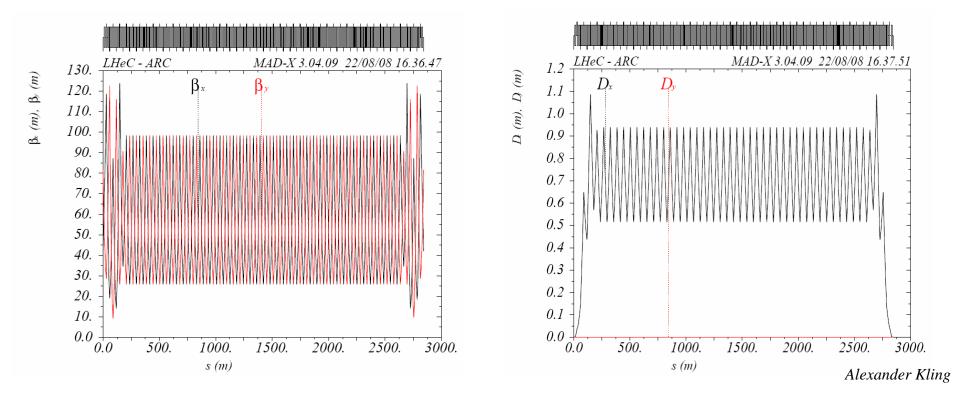
> 2808 bunches 7 TeV $\rightarrow \varepsilon_n = 3.75 \ \mu m$


Standard	Protons	Electrons
Parameters	Np=1.15*10 ¹¹	Ne=1.4*10 ¹⁰
	nb=2808	nb=2808
	Ip=582mA	Ie=71mA
Optics	$\hat{\beta_{xp}} = 180 cm$	$\beta_{xe}=12.7$ cm
	$\beta_{yp} = 50 cm$	$\beta_{ve} = 7.1 cm$
	$\varepsilon_{xp} = 0.5 nm rad$	$\varepsilon_{xe} = 7.6 nm rad$
	$\varepsilon_{vp}^{AP}=0.5nm$ rad	$\varepsilon_{ve}^{\pi}=3.8nm$ rad
Beam size	$\sigma_{xp}^{yp}=30 \ \mu m$	$\sigma_{xe} = 30 \mu m$
	$\sigma_{vp}^{\mu}=15.8 \ \mu m$	$\sigma_{ye}^{\pi}=15.8\mu m$
Luminosity	8.2*10 ³² cm ⁻² s ⁻¹	

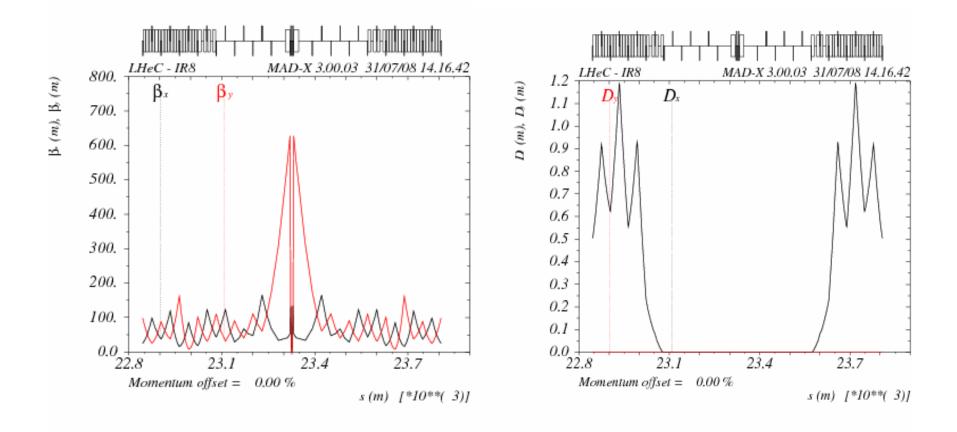
e storage ring on top of LHC

Example: LHeC Ring-Ring: basic parameters

Optics Design: Proton Ring



Optics Design: Electron Ring


Design Constraints

- Matched beam sizes at the IP required for stable operation.
- Tolerable beam-beam tune shift parameters ... for both beams
- Choose parameters close to LEP design and optimise the lattice for one ep Interaction region

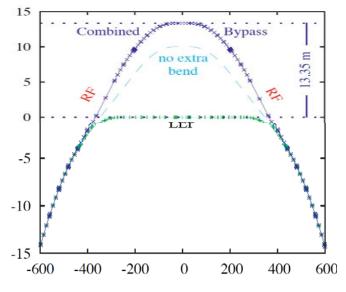
	Lep	LHeC
cell length	79m	59.25m
phase advance	<i>60/90/108</i> °	72°
number of cells	<i>290</i>	<i>384</i>

Electron Ring: Optical functions in IR 8

Alexander Kling

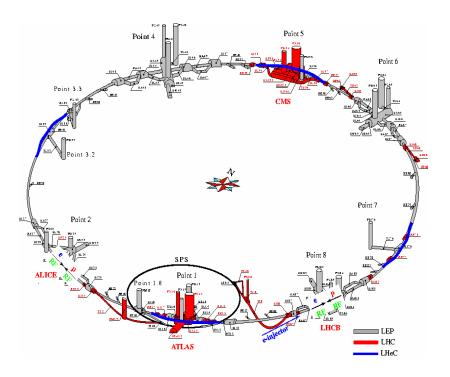
Electron Ring

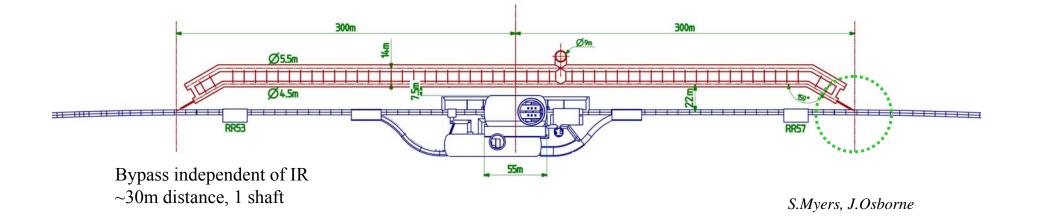
Layout IR 8 • Use a triplet focusing

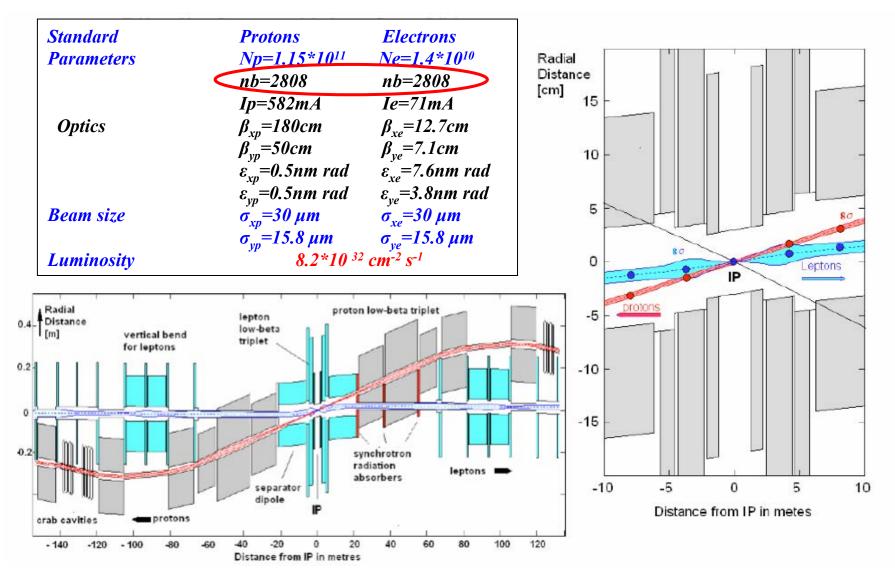

- Triplet is displaced to allow for a quick beam separation --> additional dispersion created close to IP
- Beam separation facilitated by crossing angle (1.5 mrad). 15 m long soft separation dipole completes the separation before the focusing elements of the proton beams.
- Interleaved magnet structure of the two rings: First matching quadrupole after the triplet: at 66.43 m to adjust optical functions --> try to avoid "large" β-functions
- Layout is asymmetric

asymmetry compensated by asymmetrically powered dispersion suppressors.

• Optical functions matched to the values at the IP: $\beta x = 12.7$ cm, $\beta y = 7.1$ cm


Layout IR 1 & 5 Guide the electron beam in "Bypass Beam Lines" around Atlas & CMS

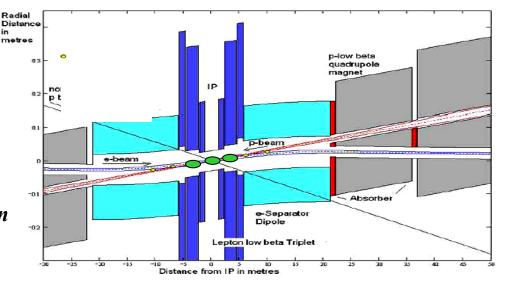

Electron Beam in IR 1 & 5


geometrical layout of the bypass sections

Helmut Burkhardt

Interaction Region Design:

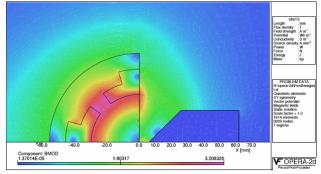
A First Complete Design for 10 ^33

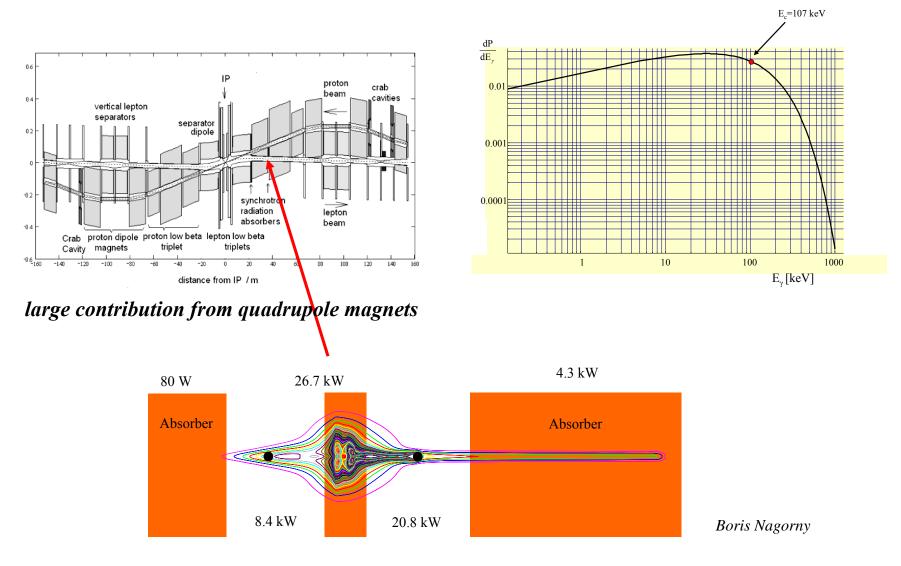

Interaction Region Design: Challenges

Advantage of LHC: Disadvantage: *large number of bunches* \rightarrow *high luminosity fast beam separation needed crossing angle to support early separation*

LHC bunch distance:25 ns1st parasitic crossing:3.75mfirst e-quad positioned at1.2m... too far for sufficient beam separation

separation has "to start at the IP"


--> support the off-centre-quadrupole separation scheme by crossing angle at the IP.


technical challenges:

sc half quadrupoles, e beam guided through p-quad cryostat crab cavities needed to avoid loss of luminosity

Present design does not accommodate luminosity monitor

IR Design: Synchrotron Radiation

overall radiation power in IR: 60 kW (HERA II: 30 kW) geometry of detector beam pipe and synchrotron radiation masks ?

Ring-Ring Parameters

Luminosity safely 10³³cm⁻²s⁻¹

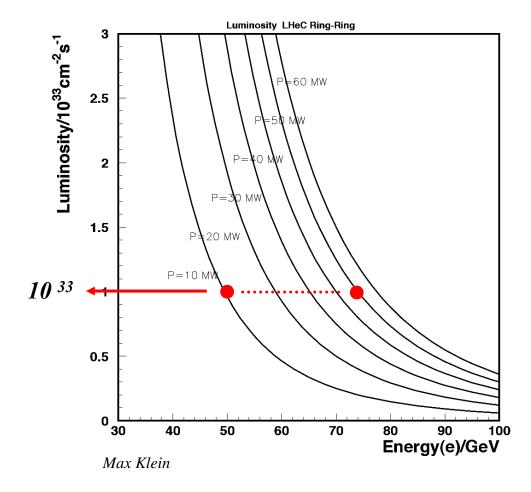
LHC upgrade: N_p increased. Need to keep e tune shift low: by increasing β_p , decreasing β_e but enlarging e emittance, to keep e and p matched.

LHeC profits from LHC upgrade but not proportional to N_p

Tuneshift Limit:

$$\Delta \boldsymbol{\nu}_{xe} = \frac{\boldsymbol{\beta}_{xe} \boldsymbol{r}_{e}}{2\pi \, \boldsymbol{\gamma}_{e}} * \frac{N_{p}}{\boldsymbol{\sigma}_{xp} (\boldsymbol{\sigma}_{xp} + \boldsymbol{\sigma}_{yp})}$$

Experience:


LEP	$\Delta v_e = 0.048$
LHC-B	$\Delta v_p = 0.0037$
HERA	$\Delta v_e = 0.051$ $\Delta v_p = 0.0016$

Standard Parameter	Protonen	Elektronen	
	$Np=1.15*10^{11}$	Ne=1.4*10 ¹⁰	nb=2808
	Ip=582 mA	Ie=71mA	
Optics	$\beta x p = 180 \text{ cm}$	$\beta x e = 12.7 \ cm$	
	$\beta yp = 50 \ cm$	$\beta ye = 7.1 \ cm$	
	exp=0.5 nm rad	$\varepsilon xe = 7.6 \ nm \ rad$	
	εyp=0.5 nm rad	eye=3.8 nm rad	
Beamsize	$\sigma x=30 \ \mu m$	$\sigma x=30 \ \mu m$	
	$\sigma y=15.8 \ \mu m$	$\sigma y=15.8 \ \mu m$	
Tuneshift	$\Delta v x = 0.00055$	$\Delta v x = 0.0484$	
4	$\Delta vy = 0.00029$	$\Delta vy = 0.0510$	
Luminosity	$L=8.2*10^{32}$		
Ultim ate	Protonen	Elektronen	
Parameter	$N_{r} = 1.7 \pm 10^{11}$	Ne=1.4*10 ¹⁰	
	$\frac{Np=1.7*10^{11}}{In=960m}$	Ie=71mA	nb=2808
Ontios	$\frac{Ip=860mA}{\beta xp=230 cm}$		
Optics	$\frac{\beta x p - 230 \text{ cm}}{\beta y p = 60 \text{ cm}}$	$\beta x e = 12.7 \ cm$ $\beta y e = 7.1 \ cm$	
	$\epsilon xp=0.5 \text{ nm rad}$	exe=9 nm rad	
	$\epsilon x p = 0.5 \ nm \ rad$	exe=9 nm rad	
Beamsize	$\sigma x=34 \ \mu m$	eye-4 nm ruu	
Deamsize	$\frac{\sigma x - 34 \ \mu m}{\sigma y = 17 \ \mu m}$		
Tuneshift	$\Delta v x = 0.00061$	$\Delta vx = 0.056$	
Tunesniji	$\Delta v_X = 0.00001$ $\Delta v_Y = 0.00032$	$\frac{\Delta v_x - 0.030}{\Delta v_y = 0.062}$	
I in a site	$\frac{L=1.03 \times 10^{33}}{L=1.03 \times 10^{33}}$	$\Delta vy = 0.002$	
Luminosity	L-1.05 "10		
Upgrade Parameter	Protonen	Elektronen	
rarameter	$Np=5*10^{11}$	Ne=1.4*10 ¹⁰	nb=1404
	Ip=1265mA	Ie=71mA	
Optik	$\beta x p = 400 \ cm$	$\beta xe = 8 \ cm$	
	βyp=150 cm	$\beta ye = 5 \ cm$	
	exp=0.5 nm rad	exe=25 nm rad	
	eyp=0.5 nm rad	eye=15 nm rad	
Strahlgröße	$\sigma x = 44 \ \mu m$		
	$\sigma y=27 \mu m$		
Tuneshift	Avx=0.0011	$\Delta vx = 0.057$	
<u>v</u>	4vv = 0.00069	$\Delta vy = 0.058$	
Luminosität	$L=1.44*10^{32}$		

Luminosity Ring Ring & Performance Limit

Design values are for 14 MW synrad loss (beam power) and 50 GeV on 7000 GeV. May have 50 MW and energies up to about 70 GeV.

$$\boldsymbol{L} = \frac{\sum_{i=1}^{n_b} (\boldsymbol{I}_{ei} * \boldsymbol{I}_{pi})}{\boldsymbol{e}^2 \boldsymbol{f}_0 2\pi \sqrt{\boldsymbol{\sigma}_{xp}^2 + \boldsymbol{\sigma}_{xe}^2} * \sqrt{\boldsymbol{\sigma}_{yp}^2 + \boldsymbol{\sigma}_{ye}^2}}$$

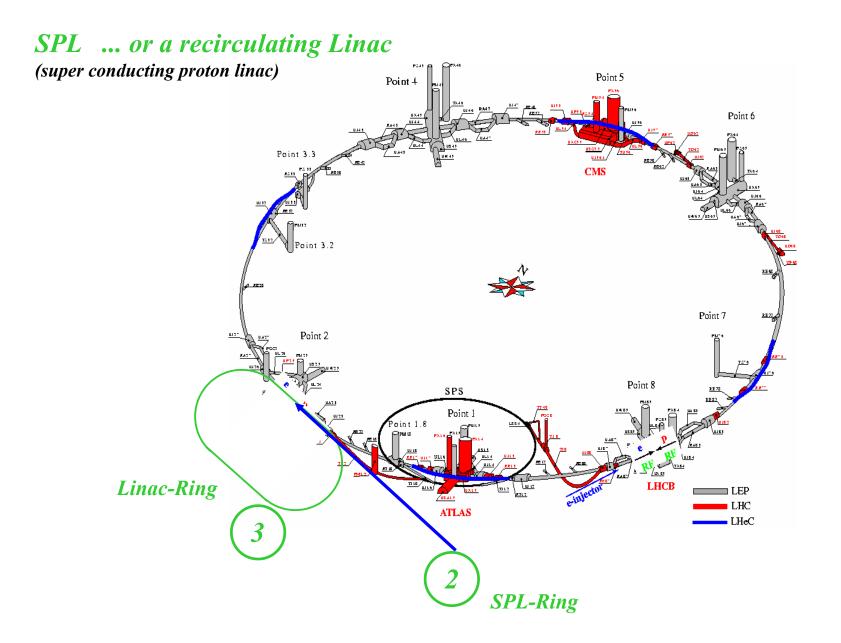
Luminosity Performance Limit: E_e, I_e due to Synchrotron Radiation

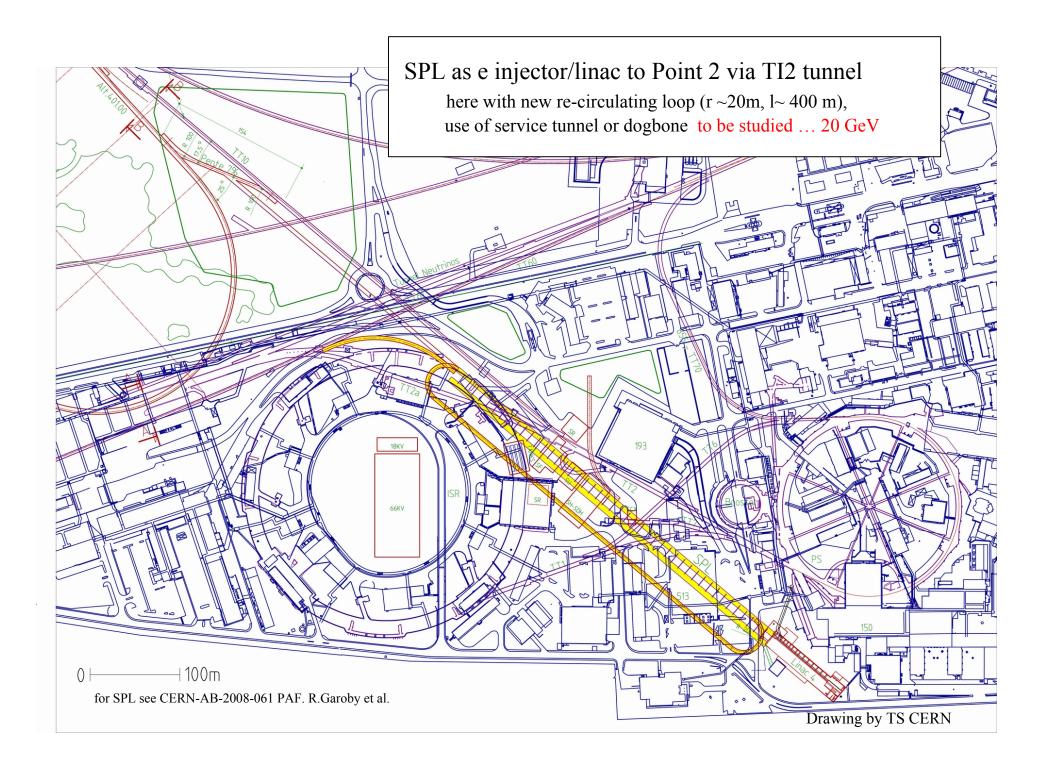
$$\boldsymbol{P}_{\gamma} = \frac{\boldsymbol{e}^2 \boldsymbol{c}}{6\pi \boldsymbol{\varepsilon}_0} * \gamma^4 * \boldsymbol{r}^2 * \boldsymbol{N}_e$$

10³³ can be reached in RR

 $\begin{array}{rcl} E_e = 50 \; GeV & \leftrightarrow & P_{syn} = 10MW \\ E_e = 75 \; GeV & \leftrightarrow & P_{syn} = 50MW & * 2 \end{array}$

klystron efficiency: 50%

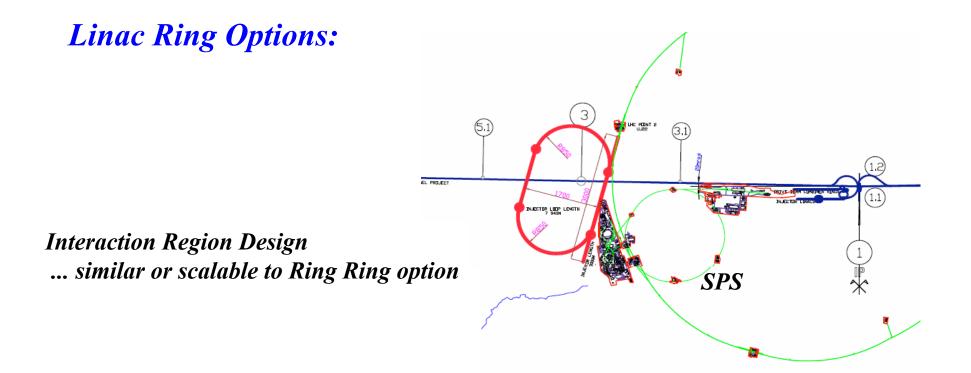

Overall power consumption: limited to 100MW


IR Design – Detector Acceptance

- So far high luminosity IR design with magnets 1.2m from IP
- Luminosity and acceptance very much depend on physics program
- Deep inelastic cross section ~1/Q⁴ (momentum transfer)
 - High Q² physics (search for new physics, electron-weak studies) require high luminosity. Can be done with reduced acceptance
 - Low Q² physics (high parton densities, diffraction,...) requires good forward and rear coverage 1 – 179°. Can be done with reduced luminosity.
 - => Look into two different interaction region setups
 - L = 10^{33} cm⁻² s⁻¹, $10^{\circ} < \theta < 170^{\circ}$ (prefer magnets not in front of calorimeter)
 - L = 10^{32} cm⁻² s⁻¹, $1^{\circ} < \theta < 179^{\circ}$

Example HERA I and HERA II IRs and Detectors

Linac Ring Options:

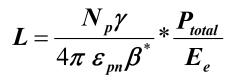


Linac Ring Options:

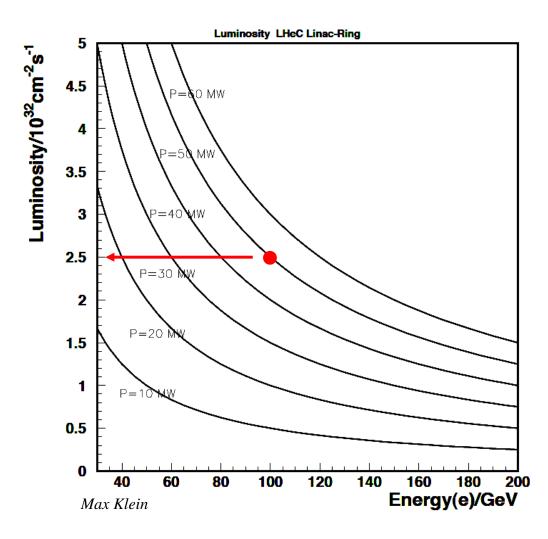
SPL ... or a recirculating Linac

		Pulsed	CW
e- energy [GeV]	30	100	100
comment	SPL* (20)+TI2	LINAC	LINAC
#passes	4+1	2	2
wall plug power RF+Cryo	100 (1 cr.)	100 (3 cr.)	100 (35 cr.)
bunch population [109]	10	3.0	0.1
duty factor [%]	5	5	100
average e- current [mA]	1.6	0.5	0.3
emittance γε [µm]	50	50	50
RF gradient [MV/m]	25	25	13.9
total linac length $\beta=1$ [m]	350+333	3300	6000
minimum return arc radius [m]	240 (final bends)	1100	1100
beam power at IP [MW]	24	48	30
e- IP beta function [m]	0.06	0.2	0.2
ep hourglass reduction factor	0.62	0.86	0.86
disruption parameter D	56	17	17
luminosity [10 ³² cm ⁻² s ⁻¹]	2.5	2.2	1.3

F.Zimmermann, S. Chattopadhyay



SPL: perfect synergy


machine will be needed for LHC upgrade in any case no new tunnel needed cheap, easy, fast to build energy limited to 20 GeV + 10 GeV ?

new e-Linac: 100 GeV seem to be feasible recirculating size ≈ SPS / HERA

Luminosity Linac Ring:

M.Tigner, B.Wiik, F.Willeke, Acc.Conf, SanFr.(1991) 2910

Luminosity Performance Limit: beam power

adequate for high beam energy

Conclusion:

* three options studied,

Ring-RingSPL - Ring... optimising still to be doneLinac Ring

* Interaction Region & beam separation scheme do not differ too much, have to be optimised according to the beam charateristics

* Performance Limitations are quite different given an overall power limit of 100MW

Ring Ring:	75 GeV / 7 TeV,	$L = 2.2 \times 10^{33}$	limited in energy
SPL:	20-30 GeV / 7 TeV	<i>L</i> = 2.5*10 32	fast, cheap, easy
Linac Ring:	100 GeV / 7 TeV,	$L = 2.2 * 10^{32}$	limited in luminosity
	140 GeV/ 7 TeV,	$L = 1.0 * 10^{33}$	only if energy recovery works

Electron-nucleus (e-A) collisions

- The LHC will operate as a nucleus-nucleus (initially Pb-Pb) collider
 - Physics programme is expected to include:
 - **Pb-Pb** at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$
 - p-Pb
 - A-A where A may be Ca, O, ...
- Natural possibility of colliding electrons with ²⁰⁸Pb⁸²⁺ nuclei
 - Requires maintenance of LHC ion injector complex (source-LINAC3-LEIR) through to the time of operation of LHeC
 - Also requires inclusion of ion capability in new generation of injector synchrotrons (PS \rightarrow PS2, SPS \rightarrow SPS2 ??)
- Electron-deuteron e-d collisions would require a completely new source (at least!)
 - Present CERN complex does not foresee deuterons

John Jowett

e-Pb collisions

- Present nominal Pb beam for LHC
 - Same beam size as protons, fewer bunches $k_b = 592$ bunches of $N_b = 7 \times 10^{7-208}$ Pb⁸²⁺ nuclei
- Assume lepton injectors can create matching train of e-

 $k_b = 592$ bunches of $N_b = 1.4 \times 10^{10} \text{ e}^-$

• Lepton-nucleus or lepton-nucleon luminosity in ring-ring option at 70 GeV

$$L = 1.09 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1} \iff L_{\text{en}} = 2.2 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$$

 May be some scope to exploit additional power by increasing electron singlebunch intensity

John Jowett

Very(!) tentative e-d luminosity

- Rough guess for beam via Linac3
 - Same beam size as protons, fewer bunches, as for Pb

 $k_b = 592$ bunches of $N_b = 1.7 \times 10^9$ deuterons

• Assume lepton injectors can create matching train of e-

 $k_b = 592$ bunches of $N_b = 1.4 \times 10^{10} \text{ e}^-$

• Lepton-nucleus or lepton-nucleon luminosity in ring-ring option at 70 GeV

 $L = 2 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$ (gives 11 MW radiated power)

- Optimist might hope for maybe 10-50 times more if Linac4 and other systems work well.
- A lot of further study required!!

John Jowett