TMD's in
$$p^{\uparrow}l
ightarrow \pi + X$$

Stefano Melis Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale and INFN, sezione di Torino.

In collaboration with:

M. Anselmino, M. Boglione, A. Prokudin, U. D'Alesio and F. Murgia

♦ SIDIS vs inclusive hadron production

- \diamond The Single Spin Asimmetry A_N
- \diamond Sivers contribution to A_N
- \diamond Transversity-Collins contribution to A_N
- ♦ Conclusions

Polarized SIDIS

> Asymmetry A_{UT} in the $\gamma^* p$ c.m. frame:

$$A_{UT} = \frac{d^6 \sigma^{lp^\uparrow \to l'hX} - d^6 \sigma^{lp^\downarrow \to l'hX}}{\frac{1}{2} [d^6 \sigma^{lp^\uparrow \to l'hX} + d^6 \sigma^{lp^\downarrow \to l'hX}]} \equiv 2 \frac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow}$$

where $d^6 \sigma^{lp^{\uparrow} \rightarrow l'hX} = d^6 \sigma / dx_B dy dz_h d^2 \boldsymbol{P}_T d\phi_h$

$$d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto \Delta^{N} f_{q/p^{\uparrow}} \otimes d\hat{\sigma} \otimes D_{h/q} \sin(\phi_{h} - \phi_{S}) + \\ + \Delta_{T} q \otimes \Delta \hat{\sigma}^{\uparrow} \otimes \Delta^{N} D_{h/q^{\uparrow}} \sin(\phi_{h} + \phi_{S}) \\ + h_{1T}^{\perp} \otimes \Delta \hat{\sigma}^{\uparrow} \otimes \Delta^{N} D_{h/q^{\uparrow}} \sin(3\phi_{h} - \phi_{S})$$

 \Rightarrow Separation of the Sivers and Collins effects

- proton-lepton c.m. frame
- p is along the +Z-axis,
- ϕ_S is the azimuthal of S_T
- h in the XZ plane
- Only h is detected

> If $P_T \gtrsim 1$ GeV then we are in a "perturbative" regime.

The single spin asimmetry A_N

> We can define the single spin asymmetry A_N :

$$A_{TU}(\phi_S) \equiv \frac{d\sigma(\phi_S) - d\sigma(\phi_S + \pi)}{\frac{1}{2}[d\sigma(\phi_S) + d\sigma(\phi_S + \pi)]};$$

 $A_{TU}(\phi_S) = 2 |S_T| A_N \sin \phi_S$

> Therefore A_N can be written as:

$$A_N = \sum_i \frac{1}{2|S_T|\sin\phi_{Si}} A^i_{TU}$$

or weighting A_{TU} with $\sin \phi_S$:

$$A_{N} = \frac{1}{2|S_{T}|[\sum_{i} \sin^{2} \phi_{Si}]} \sum_{i} A_{TU}^{\sin \phi_{Si}}$$

The single spin asimmetry A_N

> Assuming the factorization, at born level, A_N can be written as:

$$A_N \propto \frac{1}{2d\sigma^{unp}} \Big[\Delta^N f_{q/p^{\uparrow}} \otimes d\hat{\sigma} \otimes D_{h/q} + \Delta_T q \otimes \Delta \hat{\sigma}^{\uparrow} \otimes \Delta^N D_{h/q^{\uparrow}} \\ + h_{1T}^{\perp} \otimes \Delta \hat{\sigma}^{\uparrow} \otimes \Delta^N D_{h/q^{\uparrow}} \Big]$$

- The Sivers and the Collins effect add up, h_{1T}^{\perp} contribution is negligible
- $d\sigma$ is differential in $d^3 \mathbf{p}_h$ ($x_F = \frac{2p_L}{\sqrt{s}}$ and p_T): x_a integrated from x_a^{min} to 1

In collinear approximation: $x_a^{min} = \frac{\sqrt{(P_T^2 + P_L^2)} + P_L}{\sqrt{s}}$

> Possibility to extend the x_a region explored?? (consistently to exp. cuts)

•
$$x_a$$
 vs x_F at $\sqrt{s} = 7.24$ GeV
and $p_T = 1.5$ GeV

•
$$x_a$$
 vs x_F at $\sqrt{s} = 7.24$ GeV
and $p_T = 2.5$ GeV

Estimation of A_N from the Sivers and the Collins effects

∆

-0.4

-0.6

0.2

0

-0.2 0.2

0

-0.2 0.2

0

-0.2 0.2

0

-0.2

د ا

σ

S

S

♦ For valence quarks:

•
$$\Delta^N f_{u/p^{\uparrow}} > 0$$

•
$$\Delta^N f_{d/p^{\uparrow}} < 0$$

♦ For sea quarks:

•
$$\Delta^N f_{\bar{s}/p^\uparrow} > 0$$

k_| (GeV)

0 0.2 0.4 0.6 0.8 1

x = 0.1

x = 0.1

x = 0.1

x = 0.1

Anselmino et al., Eur.Phys.J.A39:89-100,2009

10⁻²

10⁻¹

1

Х

S.Melis

x∆^N f⁽¹⁾(x) d

σ

S

S

-0.05

0.02

-0.02 0.02

-0.02 0.02

-0.02 0.02

-0.02

10⁻³

0

Transversity and Collins functions

 \diamond Transversity: u and d

♦ Collins functions: favored and unfavored

Anselmino et al., ArXiv:0812.4366v1

Sivers Effect at HERMES and COMPASS:

> Sivers effect

Sivers Effect at eRHIC:

> Sivers effect

Collins Effect at HERMES and COMPASS:

> Collins effect

Collins Effect at eRHIC:

> Collins effect

S.Melis

14

Summary and Conclusions

- > Inclusive hadron production in $p^{\uparrow}l$ scattering
- > Factorization assumed: experimental test
- > Different kinematical regions covered with respect to SIDIS
- > Sivers effect can be large
- > Transversity Collins effect small in some kinematical regions
- > ... only preliminary results

Parametrizations:

> We assume a factorized gaussian smearing for the unpolarized PDF and FF:

$$\diamond f_{q/p}(x,k_{\perp}) = f_q(x) \frac{1}{\pi \langle k_{\perp}^2 \rangle} e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle} \quad \diamond D_q^h(z,p_{\perp}) = D_q^h(z) \frac{1}{\pi \langle p_{\perp}^2 \rangle} e^{-p_{\perp}^2/\langle p_{\perp}^2 \rangle}$$
$$\langle k_{\perp}^2 \rangle = 0.25 \; (\text{GeV}/c)^2 \qquad \qquad \langle p_{\perp}^2 \rangle = 0.20 \; (\text{GeV}/c)^2 \; .$$

 $\langle k_{\perp}^2 \rangle$ and $\langle p_{\perp}^2 \rangle$ fixed as found in Ref. [1] by analysing the Cahn effect.

> Similarly for the Sivers function:

$$\Delta^N f_{q/p^{\uparrow}}(x,k_{\perp}) = 2 \mathcal{N}_q(x) h(k_{\perp}) f_{q/p}(x,k_{\perp})$$

$$\mathcal{N}_q(x) = N_q \, x^{\alpha_q} (1-x)^{\beta_q} \, \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta_q}} \le 1 \, , \ h(k_\perp) = \sqrt{2e} \, \frac{k_\perp}{M_1} \, e^{-k_\perp^2/M_1^2} \le 1 \, ,$$

where N_q , α_q , β_q and M_1 (GeV/c) are free parameters

Fit of HERMES & COMPASS SIDIS data: Sivers functions

Anselmino et al., Eur.Phys.J.A39:89-100,2009

Fit: HERMES data

➤ HERMES data[◊] fit

$$ep \rightarrow e\pi X$$
 $p_{lab} = 27.57 \text{ GeV}/c$ $ep \rightarrow eKX$

Fit: COMPASS data

> COMPASS data^{\diamond} fit

 $\mu D \rightarrow \mu \pi X$ $p_{lab} = 160 \text{ GeV}/c$ $\mu D \rightarrow \mu KX$

◊ A. Martin (COMPASS), Czech. J. Phys. 56, F33 (2006)

♦ For valence quarks:

•
$$\Delta^N f_{u/p^{\uparrow}} > 0$$

•
$$\Delta^N f_{d/p^{\uparrow}} < 0$$

♦ For sea quarks:

•
$$\Delta^N f_{\bar{s}/p^{\uparrow}} > 0$$

 $\diamond \Delta^N f_q^{(1)}(x) \equiv \int d^2 \mathbf{k}_\perp \, \frac{k_\perp}{4m_p} \, \Delta^N f_{q/p\uparrow}(x,k_\perp) = -f_{1T}^{\perp(1)q}(x)$

Parametrizations of the Transversity and the Collins function

> We assume a factorized gaussian smearing for $\Delta_T q(x)$ and $\Delta^N D_{\pi/q^{\uparrow}}$:

$$\diamond \Delta_T q(x, k_\perp) = \frac{1}{2} \mathcal{N}_q^T(x) [f_{q/p}(x) + \Delta q(x)] \frac{1}{\pi \langle k_\perp^2 \rangle} e^{-k_\perp^2 / \langle k_\perp^2 \rangle}$$

$$\diamond \Delta^N D_{\pi/q^{\uparrow}}(z, p_{\perp}) = 2\mathcal{N}_q^C(z) h(p_{\perp}) D_{\pi/q}(z) \frac{1}{\pi \langle p_{\perp}^2 \rangle} e^{-p_{\perp}^2/\langle p_{\perp}^2 \rangle}$$

where:

$$\mathcal{N}_q^T(x) = N_q^T x^{\alpha_q} (1-x)^{\beta_q} \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta_q}}$$
$$\mathcal{N}_q^C(x) = N_q^C x^{\gamma} (1-x)^{\delta} \frac{(\gamma+\delta)^{(\gamma+\delta)}}{\gamma^{\gamma} \delta^{\delta}} \qquad h(p_{\perp}) = \sqrt{2e} \frac{p_{\perp}}{M_h} e^{-p_{\perp}^2/M_h^2}$$

$N_u^T = 0.64 \pm 0.34$	$N_d^T = -1.00 \pm 0.02$
$\alpha = 0.73 \pm 0.51$	$\beta = 0.84 \pm 2.30$
$N^{C}_{fav} = 0.44 \pm 0.07$	$N^{C}_{unf} = -1.00 \pm 0.06$
$\gamma = 0.96 \pm 0.08$	$\delta = 0.01 \pm 0.05$
$M_h^2 = 0.91 \pm 0.52 \ { m GeV^2}$	

Anselmino et al., ArXiv:0812.4366v1

Fit: HERMES & COMPASS data

> HERMES data^{\diamond} fit

> COMPASS data^{\diamond} fit

 $ep \rightarrow e\pi X$ $p_{lab} = 27.57 \text{ GeV}/c$

$$\mu D
ightarrow \mu \pi X$$
 $p_{lab} = 160 \, {
m GeV/c}$

♦ M. Diefenthaler, (2007),arXiv:0706.2242

Fit: BELLE data

> BELLE data^{\diamond} fit

 $e^+e^- \to \pi\pi X$ 0.2 $0.2 < z_1 < 0.3$ $0.3 < z_1 < 0.5$ $A_{12}(z_1, z_2)$ 0.1 0 0.5 < z₁ < 0.7 0.7 < z₁ < 1 0.2 $A_{12}(z_1, z_2)$ 0.1 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 **Z**₂ **Z**₂ $\sqrt{s} = 10.58 \text{ GeV}/c$

◊ R. Seidl et al., Phys. Rev. D78

S.Melis

24

Transversity and Collins functions

Collins functions: favored and unfavored

