Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

Jörg Pretz

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

3 Kinematic Distributions & Range

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ りへの

(3) Kinematic Distributions & Range

4 Qualitative Improvements

(日) (同) (目) (日) (日) (日)

3 Kinematic Distributions & Range

Qualitative Improvements

Introduction

Jörg Pretz Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

・ロ・・(四・・)(日・・)日

Nucleon Spin Decomposition

Nucleon Spin Decomposition

$\frac{1}{2} =$	$\frac{1}{2}\Delta\Sigma$	$+ \Delta G$	+	Lq	+	Lg
	S	pin		orbital	angula	r momentum
	Quarks	Gluons		Quarks	-	Gluons

 $\Delta\Sigma$ only ≈ 0.3 ! Expected ≈ 0.6 . One possibility to solve this "spin puzzle" would require large gluon contribution $\Delta G = \int_0^1 \Delta g(x) dx = 2 - 3.$

(日) (同) (E) (E) (E)

How to access the gluon distribution?

Use hadronic final state in deep inelastic scattering: $\vec{\mu} + \vec{N} \rightarrow \mu' + {\rm hadrons} + X$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ト

How to access the gluon distribution?

Use hadronic final state in deep inelastic scattering: $\vec{\mu} + \vec{N} \rightarrow \mu' + {\rm hadrons} + X$

How to tag Photon -Gluon- Fusion sub-process $\gamma^* {\it g} \rightarrow q \bar{q} ~?$

How to tag $\gamma^* g \rightarrow q \bar{q}$?

Cleanest way: Look at charmed particles resulting from the fragmentation of the process $\gamma^*g \rightarrow c\bar{c}$:

- no intrinsic charm,
- no charm quarks in string fragmentation
- If both charmed particles are reconstructed, one has access to x_g

Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

Results on Δg from DIS

- Data show small values of ∆g/g at x_g ≈ 0.1
- confirmed by indirect measurements
 - Scaling violation of *g*₁^{p,n,d} structure function
 - *pp* scattering at RHIC
- all measurements are concentrated around $x_g = 0.1$, little is known about $\Delta g(\mathbf{x}_g)$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Results on Δg from DIS

- Data show small values of $\Delta g/g$ at $x_g \approx 0.1$
- confirmed by indirect measurements
 - Scaling violation of *g*₁^{p,n,d} structure function
 - *p p p s*cattering at RHIC
- all measurements are concentrated around x_g = 0.1, little is known about Δg(x_g)
- only COMPASS point is obtained with the (least model dependent) open charm method
- ullet this result is obtained in pprox 200 days of running

Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

FOM: Luminosity & Diluting Factors

・ロン ・回 と ・ヨン ・ ヨン

Luminosity

Luminosity:

	COMPASS	collider	
Lumi	$0.3 \cdot 5 \cdot 10^{32} / \mathrm{cm}^2 / \mathrm{s}$	$2 \times 10^{32}/\mathrm{cm}^2\mathrm{s}$	

Gain: $2/(0.3 \cdot 5) = 1.3$

Diluting Factors

Diluting factors:

	COMPASS	collider
PT	0.5	0.8
P_B	0.8	0.8
f	0.4	1
$(P_T P_B f)^2$	0.026	0.41

Gain: 0.41/0.026 = 16

FOM: Photon Flux

(ロ) (四) (三) (三) (三)

Kinematic Region

• Playground in $Q^2 - y$ plane $(Pol(\gamma^*) \approx y)$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Kinematic Region

- Playground in $Q^2 - y$ plane $(Pol(\gamma^*) \approx y)$
- Higher Q^2_{min} for μ

・ロト ・四ト ・ヨト ・ヨト - ヨ

Advantage e over μ

 $Q^2 \times$ photon flux vs. Q^2 (for y = 0.5)

Gain due to higher photon flux \approx 2.

Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

FOM: D⁰ meson reconstruction

<ロ> (四) (四) (三) (三) (三) 三

Introduction Figure of Merit (FOM) Kinematic Distributions & Range Qualitative Improvements Summary & Outlook

D^0 reconstruction

Jörg Pretz

Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

D^0 reconstruction

	COMPASS S:B	collider S:B	
D^0	1:10	4:1	
D^*	1:1	1:0	

・ロト ・回 ト ・ヨト ・ヨー

D^0 reconstruction

	COMPASS S:B	collider S:B	Gain in FOM*
D^0	1:10	4:1	11
D^*	1:1	1:0	2.6

In COMPASS D^0 and D^* have approximately the same FOM: \Rightarrow total gain $\approx \frac{11+2.6}{2} = 7$

* for the same number of signal events

(日) (同) (E) (E) (E)

D^0 reconstruction

- COMPASS has a solid state target:
 - $\Rightarrow D^0$ decay vertex cannot be resolved from main vertex
 - ullet \Rightarrow mass resolution deteriorated due to multiple scattering
- Additional gains at collider:
 - from number of reconstructed D mesons (COMPASS target has ≈ 1 nuclear interaction length)
 - considering more decay channels $(D^0 \rightarrow K^- \pi^+ \text{ has only } 4\% \text{ BR})$

Gain in FOM

source	factor
LUMI	1.3
$(fP_TP_B)^2$	16
photon flux	2
eff. D^0 signal	> 7
total	\approx 300

・ロン ・回入 ・ヨン ・ヨン ・ヨー

Kinematic Distributions & Range

(ロ) (四) (目) (日) (日)

distribution of events in $Q^2 - y$ plane from PYTHIA MC

scattered electron: in θ vs. p

Jörg Pretz

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

(ロ) (四) (E) (E) (E)

gluon momentum fraction range covered

Lower limit:

$$x_g(min) = \frac{4m_c^2}{s}$$

(日) (同) (目) (日) (日) (日)

QCD analysis on $\Delta g(x)$

- largest error in the region $x_g < 0.1$
- RHIC covers and will cover $0.01 < x_g < 0.2$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction Figure of Merit (FOM) Kinematic Distributions & Range

Structure function $g_1(x)$ for different Q^2

ヘロン ヘロン ヘヨン ヘヨン

Structure function $g_1(x)$ for different Q^2

$$x_{Bj}(min) = \frac{1}{Ms}$$
$$Q^2 > 1 \text{GeV}^2$$

COMPASS
 pol eNC

$$E = 160 \text{ GeV}$$
 $E_p = 15 \text{ GeV}, E_e = 3 \text{ GeV}$
 s/GeV^2
 300
 180

 $x_{Bj}(min)$
 0.0036
 0.0059

Jörg Pretz

Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

Qualitative Improvements

(ロ) (日) (日) (日) (日)

Qualitative differences

- In COMPASS only one of the two *D* mesons produced in a event is reconstructed
 - \Rightarrow momentum fraction x_g of gluon cannot be reconstructed
- Collider: Possibility to reconstruct both *D* mesons in one event ⇒ better access to gluon momentum fraction x_g
- \Rightarrow measurement of $\Delta g/g(\mathbf{x_g})$ is possible and not only

Better Reconstruction of x_g

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary & Outlook

・ロト ・四ト ・ヨト ・ヨト - ヨ

Summary

Measurement of $\frac{\Delta g}{g}(\mathbf{x_g})$ via open-charm at collider looks very promising!

・ロン ・回 ・ ・ ヨン ・ ヨン

Spare

・ロト ・回 ト ・ヨト ・ヨー

Kinematic Region for COMPASS ($p_{\mu} = 160$ GeV)

Jörg Pretz

Gluon Polarization via Open Charm Production at $\vec{e}\vec{p}$ collider

▲御≯ ▲注≯ ▲注≯

Э

Introduction Figure of Merit (FOM) Kinematic Distributions & Range Qualitative Improvements Summary & Outlook

Better Reconstruction of x_g

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・