Parallelization and Global PID for PandaROOT

V.Suyam Jothi, M. Babai, J.Messchendorp

02-03-2009

KVI Groningen, Netherlands

Overview

- Parallelization
 - Methods
 - Issues
- Global PID
 - Correlated parameters
 - MVA tools
 - Cross validation
- Summary & outlook

Parallelization

- Open Multi Processing (openMP)
 - M.Babai
- Message Passing Interface (MPI)
 - J.Messchendorp
- Parallel ROOT Facility (PROOF)
 - Klaus Goetzen
- GRID
 - Dan Protopopescu
- Graphical card (GPU)
 - Mohammad Al-Turany

OpenMP

- Shared memory architecture (multi core machine)
- Master thread forks to multiple threads in parallel region
- Standard included in gcc 4.2 and higher

OpenMP in PandaROOT

- Implementation in different modules
 - PndEmcMakeBump works
 - Lot of effort to make dependencies thread safe
- Track fitting can be made parallel
 - But dependencies are not thread safe
- Message Developers have to think about thread safety of the modules ?

MPI in PandaROOT

- Distributed memory architecture
 - Standard in High performance computing
- Example of event level parallelization
- /pandaroot/PndTools/mpiTools Johan
- http://panda-wiki.gsi.de/cgi-bin/view/Computing/PandaRootTools Documentation

Distributed Memory System

Global PID

Global

- Global track requires particle identification (electron, pion, kaon, muon, proton)
- Global PID tool Classifies tracks
- Likelihoods for particle types
- Projective likelihood first order solution
- But we have correlated parameters!

Zernike Moments from EMC

Correlation Matrix of zernike moments

Multi Variate Analysis tools

- 1 dim cuts
- 2 dim cuts (banana cuts)
- 3 dim cuts (separating planes)
- What is the solution in the higher dimensions?
- How can one draw cuts in higher dimensions? - Multi Variate Analysis

Multi Variate Analysis

- K-Nearest Neighbors density estimator
 Large Statistics
- Boosted Decision Tree Statistical learning
- Learning Vector Quantization M.Babai – /pandaroot/PndTools/MVA/
- Neural Network Bertram
 - electron/pion seperation

Multi Variate Analysis

- K-Nearest Neighbors density estimator
 Large Statistics
- Boosted Decision Tree Statistical learning
- Learning Vector Quantization M.Babai
- Neural Network Bertram

– electron/pion seperation

K Nearest Neighbors

Boosted Decision Tree

Simulation and Analysis

- Full Simulation PandaROOT
 - electron, pion 10^6 events each in KVI cluster
- Geant3 Transport model
- Full reconstruction chain
- Tracking Ihetrack
- Momentum 1 2 GeV
- TMVA analysis

Zernike Moments from EMC

Cross validation of KNN and BDT

- Performance Optimization(Err rate)
- Learning time
- Classification time
- Resources issues(File size)

MVA Output

BDT Performance

BDT Performance

KNN Performance

Performance table

	BDT	KNN
Err Rate	15.5 % + overfiiting	14.025 %
Learning time	200 s + production time (1Hz)	20 s + production time (1Hz)
Classification time	0.016 s/track	0.02 s/track
File size	140 Mb(350 Trees)	250 Mb(10^6) 25Gb(10^8)

Summary & Outlook

- Parallelization
 - Various parallel programing techniques are under consideration for PandaROOT
 - Thread safety !
- Global PID
 - MVA analysis necessary.
 - KNN & BDT studied for EMC shower parameters
 - GPID task ready (LVQ, KNN, BDT)
 - Physics benchmark study
 - Other application (photon/pi0 separation -Christian Geldmann)

Criterion for "Best" Tree Split

- Purity, *P*, is the fraction of the weight of a node (leaf) due to signal events.
- Gini Index: Note that Gini index is 0 for all signal or all background.

$$Gini = (\sum_{i=1}^{n} W_i)P(1-P)$$

 The criterion is to minimize Gini_left_node+ Gini_right_node.

Decision Tree

AdaBoost

Given: m examples $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ The goodness of h_t is Initialize $D_1(i) = 1$ calculated over D_t For t = 1 to T and the bad guesses. 1. Train learner h_t with min error $\varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]$ 2. Compute the hypothesis weight $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)$ The weight <u>Adapts</u>. The bigger ε_t becomes the smaller α becomes. 3. For each example i = 1 to m $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{vmatrix} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{vmatrix}$ Boost example if incorrectly predicted. Output $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$ Z_t is a normalization factor. Linear combination of models.

References

 Y.Freund and R.E. Schapire. A short introduction to boosting. *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September 1999.