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Overview

• Parallelization
– Methods
– Issues

• Global PID
– Correlated parameters
– MVA tools
– Cross validation

• Summary & outlook



  

Parallelization

• Open Multi Processing (openMP)

– M.Babai

• Message Passing Interface (MPI)

– J.Messchendorp

• Parallel ROOT Facility (PROOF)

– Klaus Goetzen

• GRID 

– Dan Protopopescu

• Graphical card (GPU)

– Mohammad Al-Turany



  

OpenMP

• Shared memory architecture ( multi core 
machine)

• Master thread forks to multiple threads in 
parallel region

• Standard included in gcc 4.2 and higher



  

OpenMP in PandaROOT

• Implementation in different modules
– PndEmcMakeBump  – works 
– Lot of effort to make dependencies thread safe

➢ Track fitting – can be made parallel 
➢ But dependencies are not thread safe

➢ Message – Developers have to think about thread 
safety of the modules ?



  

MPI in PandaROOT

• Distributed memory architecture 
– Standard in High performance computing

• Example of event level parallelization 
• /pandaroot/PndTools/mpiTools - Johan 
• http://panda-wiki.gsi.de/cgi-bin/view/Computing/PandaRootTools - Documentation

http://panda-wiki.gsi.de/cgi-bin/view/Computing/PandaRootTools


  

Global PID



  

Global 

• Global track – requires particle identification 
(electron, pion, kaon, muon,proton) 

• Global PID tool – Classifies tracks
• Likelihoods for particle types
• Projective likelihood – first order solution 
• But we have correlated parameters!



  

 Zernike Moments from EMC



  

Correlation Matrix of zernike moments



  

Multi Variate Analysis tools

• 1 – dim cuts
• 2 – dim cuts (banana cuts)
• 3 – dim cuts (separating planes)
• What is the solution in the higher 

dimensions?
• How can one draw cuts in higher 

dimensions? - Multi Variate Analysis



  

Multi Variate Analysis

• K-Nearest Neighbors – density estimator
– Large Statistics

• Boosted Decision Tree – Statistical learning
• Learning Vector Quantization – M.Babai

– /pandaroot/PndTools/MVA/

• Neural Network – Bertram
– electron/pion seperation



  

Multi Variate Analysis

• K-Nearest Neighbors – density estimator
– Large Statistics

• Boosted Decision Tree – Statistical learning
• Learning Vector Quantization – M.Babai
• Neural Network – Bertram

– electron/pion seperation



  

K Nearest Neighbors



  

Boosted Decision Tree



  

Simulation and Analysis

• Full Simulation – PandaROOT
– electron,pion 10^6 events each in KVI cluster

• Geant3 – Transport model
• Full reconstruction chain
• Tracking – lhetrack 
• Momentum  1 - 2 GeV
• TMVA analysis 



  

 Zernike Moments from EMC



  

Cross validation of KNN
and BDT

• Performance Optimization(Err rate)
• Learning time
• Classification time
• Resources issues( File size)



  

MVA Output



  

BDT Performance

15.5 %



  

BDT Performance



  

KNN Performance

14.025 %   (4 dim – 10^6)
Higher dim – large stat



  

Performance table
BDT KNN

Err Rate 15.5 % + overfiiting 14.025 %

Learning time 200 s + production 
time ( 1Hz)

20 s + production time 
( 1Hz)

Classification time 0.016 s/track 0.02 s/track

File size 140 Mb(350 Trees)
250 Mb(10^6)
25Gb(10^8)



  

Summary & Outlook
• Parallelization

– Various parallel programing techniques are under 
consideration for PandaROOT

– Thread safety !

• Global PID
– MVA analysis necessary. 
– KNN & BDT studied for EMC shower parameters
– GPID task ready  ( LVQ , KNN , BDT )
– Physics benchmark study
– Other application ( photon/pi0 separation -Christian 

Geldmann ) 



  

Criterion for “Best” Tree Split

• Purity, P, is the fraction of the weight of a 
node (leaf) due to signal events.

• Gini Index: Note that Gini index is 0 for all 
signal or all background.

• The criterion is to minimize 
Gini_left_node+ Gini_right_node.



  

Decision Tree 



  

Given: m examples (x1, y1), …, (xm, ym) where xi∈ X, yi∈ Y={-1, +1}

Initialize D1(i) = 1 The goodness of ht is 
calculated over Dt 

and the bad guesses.
For t = 1 to T

ε t=Pr i~Dt [ ht x i≠ y i]1. Train learner ht with min error

α t=
1
2
ln 1−εtεt 2. Compute the hypothesis weight 

Dt1 i =
Dt  i 
Z t

×{e−α t ifh t x i= yi
e
α t ifh t x i≠ yi

3. For each example i = 1 to m

H  x =sign∑
t=1

T

α tht  x 
Output

The weight Adapts. 
The bigger ε t becomes 
the smaller αt becomes.

Zt is a normalization factor.

AdaBoost

Boost example if 
incorrectly predicted.

Linear combination of models.
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