PADIWA Response Studies

Matthias Hoek

PANDA PID Meeting, Rauischholzhausen, 13/11/2015

PADIWA Input Stage Modifications

Test Setup @ GSI Electronics Lab

- Signal generator Tektronix AWG 7122C (GSI)
 - 10bit, 12Gs/s
 - 2 Channels (coupled)
 - Rectangular signal
- Signal properties checked with Tektronix DPO 7254 oscilloscope
 - Amplitude $-17.3 \pm 0.5 mV$
 - Width 2.50 ± 0.02 ns
 - Rise time $492 \pm 48 ps$
- Procedure
 - PADIWA channel 15 as reference
 - Measure time difference between two channels
 - Extract width of distribution (Gauss)

Results

PADIWA Input Capacitance Test corrected σ_t (ps) 091 001 001 001 17mV 48mV **Prototype value** 140 120 100 80 60 40 20 10² 10 1 capacitance (pF)

• Ideas on timing degradation

•
$$\sigma_t \propto \frac{V_{noise}}{S_{signal}}$$
, with
 $S_{Signal} = \frac{\Delta V}{\Delta t}$

- Slope decreases with C_F
- Frequency behaviour of noise?
 - Must be low frequency
- Test with larger amplitude
 - *S_{Signal}* increases
 - σ_t improves!

PSPICE Simulations

- Model Low Pass with PSPICE
 - Extract slope at 1mV level

C_F (pF)

Conclusions

- Clear dependence of timing resolution on capacitance observed
- Need better understanding of circuit properties
 - PSPICE simulations
- Investigate noise properties
 - Not pure White Noise
 - Must have low frequency component