Simulation of *Zc*(3900)-production and decays in \overline{p} -*d* collisions at PANDA

Alexander Blinov, BINP&NSU, Novosibirsk Jens Sören Lange, Elisabetta Prencipe, FZ Jülich PANDA LV C-meeting, Vienna, 01.12.2015

- 1. Status of Z-states,
- 2. Zc-coupling with nucleon-antinucleon channel,
- 3. *Zc*-production in \overline{p} -*d* collisions,
- 4. Reconstruction of $Z_c(3900) \rightarrow \pi$ J/ $\psi \rightarrow$ I+I-,
- 5. Conclusions.

Observation of Zc(3900) at BESIII

PRL110, 252001 (2013)

 $e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^+\pi^- J/\psi$

- M = 3899.0±3.6±4.9 MeV/c²
- Γ = 46±10±20 MeV

$$e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^0 \pi^0 J/\psi$$

Observation of Zc(3885) and Z_c(4025)

the Zc states at BESIII

	Width (MeV)	Mass (MeV/c²)	Channel
Close to D D* threshold (3875 MeV)	$46 \pm 10 \pm 20$ 29.6±8.2 (Prel.)	$3899.0 \pm 3.6 \pm 4.9$ 3894.8 ± 2.3 (Prel.)	πJ/ψ
	$24.8 \pm 3.3 \pm 11.0$	$3883.9 \pm 1.5 \pm 4.2$	(D D*)±
	1σ difference	2σ difference	
Close to D* D* threshold	$7.9 \pm 2.7 \pm 2.6$	4022.9±0.8±2.7 4022.9±0.8±2.7(Prel.)	π_{h_c}
(4017 MeV)	$24.8\!\pm\!5.6\!\pm\!7.7$	$4026.3 \pm 2.6 \pm 3.7$	(D* D*)±
	2σ difference	1σ difference	

- At least 4-quarks; Near threshold;
- Isospin: I=1, hint of a new spectroscopy ?
- Whether they are two states need further understanding (couple channel analysis? quantum number determination? interference?)

Couplings with nucleon-antinucleon channel: CC v.s. Zc

Cumulative probability distribution of P_N in deuteron

W distribution of \overline{p} -n collisions

Simulation of p-d collisions in PANDAroot (A.Gillitzer)

Decay pbardSystem 1.0 p+ pbarnSystem DeuteronSpectator 1.0 3.25; Enddecay # Decay pbarnSystem 1.0 J/psi pi- PHSP; Enddecay # Decay J/psi 1.0 mu+ mu-VLL; Enddecay # End Decay pbardSystem 1.0 p+ pbarnSystem DeuteronSpectator 1.0 3.25; Enddecay # Decay pbarnSystem 1.0 pi+ pi- pi- PHSP; Enddecay # End

Simulation of non-resonant $p d \rightarrow \pi - J/\psi \rightarrow \mu + \mu -$

Ppbar = 7.05 GeV/c, 1000 events

Simulation of p d \rightarrow Z_c(3900) \rightarrow π J/ ψ \rightarrow μ + μ -Inputs & assumptions: $M(Z_c) = 3890 \text{ MeV} (P_{pbar} = 7.05 \text{ GeV/c})$ $\Gamma(Z_c) = 35 MeV$ $Br(Z_c \rightarrow J/\psi + \pi) = 100\%, Br(J/\psi \rightarrow \mu + \mu) = 5.93\%$ Coupling (Z_c -PbarN) = Coupling ($\psi(3770)$ -PbarP) => $\sigma(Pbar N \rightarrow Z_c) = \sigma(Pbar P \rightarrow \psi(3770)) \times \Gamma(\psi(3770))/\Gamma(Z_c) = 7.5nb$ $\langle \sigma(Pbar N \rightarrow Z_c) \rangle = 0.23 \sigma_{peak}(Pbar N \rightarrow Z_c) = 1.7 nb$ $\sigma(Pbar N \rightarrow Z_c \rightarrow \pi J/\psi \rightarrow I+I_{-}) = 0.44 < 0.1 > nb => it takes 10 pb-1$ (12 days of data taking) to get 1000 $Z_c \rightarrow \pi J/\psi \rightarrow \mu + \mu$ - events

Simulation of p d \rightarrow Z_c(3900) \rightarrow π - J/ ψ \rightarrow μ + μ -

Ppbar = 7.05 GeV/c, 1000 events

Non-resonant v.s. resonant p d $\rightarrow \pi$ - J/ $\psi \rightarrow \mu$ + μ -

Non-resonant

 $\Gamma(Z_c) = 35 \, MeV$

 $\Gamma(Z_c) = 1 MeV$

Simulation of Z-search with $\sigma_{bg}/\sigma_z = 1$ and 10

However, $\sigma(\text{Pbar N} \rightarrow Z_c \rightarrow \pi - J/\psi \rightarrow I+I-) = 0.44 \text{ nb and}$ $\sigma(\text{Pbar N} \rightarrow \pi - \pi + \pi -) = 20\ 000 \text{ nb} (\text{FTF model})$

Pbar N $\rightarrow \pi$ - J/ $\psi \rightarrow$ I+I- v.s. Pbar N $\rightarrow \pi$ - π + π -

 J/ψ mass (all)

Conclusion

A search for p d \rightarrow Z_c(3900) \rightarrow π - J/ ψ \rightarrow I+I- looks promising in μ + μ and even more promising in e+*e*- mode.

Simulation of p d \rightarrow Z_c(3900) \rightarrow π - J/ ψ \rightarrow e+e-

Ppbar = 7.05 GeV/c, 1000 events

Mass distributions of all track pairs

and

with e pid

Forward RICH for PANDA

Observation of Z_b(10610) and Z_b(10650) by BELLE

Figure 1: Invariant mass spectra of the (a) $\Upsilon(1S)\pi^{\pm}$, (b) $\Upsilon(2S)\pi^{\pm}$, (c) $\Upsilon(3S)\pi^{\pm}$, (d) $h_b(1P)\pi^{\pm}$ and (e) $h_b(2P)\pi^{\pm}$ combinations.

Figure 3: Missing mass of the pairs formed from the reconstructed *B* candidate and charged pion (a) and missing mass of the charged pions for the $B\pi$ combinations for (b) $\Upsilon(5S) \to B\bar{B}^*\pi$ and (c) $\Upsilon(5S) \to B^*\bar{B}^*\pi$ candidate events.

Parameters of $Z_{b}(10610)$ and $Z_{b}(10650)$ states $M_{1} = (10607.4 \pm 2.0) \text{ MeV}/c^{2}, \qquad M_{2} = (10652.2 \pm 1.5) \text{ MeV}/c^{2},$ $\Gamma_{1} = (18.4 \pm 2.4) \text{ MeV}, \qquad \Gamma_{2} = (11.5 \pm 2.2) \text{ MeV}.$

Table 1: Branching fractions (\mathscr{B}) of $Z_b(10610)$ and $Z_b(10650)$ assuming that the observed so far channels saturate their decays.

Channel	\mathscr{B} of $Z_b(10610)$, %	\mathscr{B} of $Z_b(10650)$, %
$\Upsilon(1S)\pi^+$	0.32 ± 0.09	0.24 ± 0.07
$\Upsilon(2S)\pi^+$	4.38 ± 1.21	2.40 ± 0.63
$\Upsilon(3S)\pi^+$	2.15 ± 0.56	1.64 ± 0.40
$h_b(1P)\pi^+$	2.81 ± 1.10	7.43 ± 2.70
$h_b(2P)\pi^+$	2.15 ± 0.56	14.8 ± 6.22
$B^+\bar{B}^{*0}+\bar{B}^0B^{*+}$	86.0 ± 3.6	-
$B^{*+}\bar{B}^{*0}$	<u> </u>	73.4 ± 7.0

 $B^0 \rightarrow J/\psi \ K^- \ \pi^+$

- 4D amplitude analysis
- 10 K* resonances, Z⁺(4430), Z⁺(new)
- 6.6σ significance
- M = 4196 +31 +17 MeV/C²
 -29 -13
- G = 370 ± 70 ⁺⁷⁰₋₁₃₂ MeV
- JP=1+

spin-parity hypothesis

Model	0-	1-	2^{-}	2+
Without K^* (1680)	8.5σ	8.5σ	8.0σ	9.0σ
Without $K_0^*(1950)$	8.4σ	8.8 0	7.3σ	8. 9σ
LASS	6.1σ	7.4σ	4.4σ	7.0σ
Free masses and widths	7.6σ	7.9σ	5.9σ	7.8σ
Free r	7.4σ	8.7 <i>o</i>	7.5σ	9.2σ
Nonresonant ampl. (S)	7.6σ	8.1σ	7.2σ	8.50
Nonresonant ampl. (S,P)	7.4σ	8.1σ	7.2σ	8.4σ
Nonresonant ampl. (S,P,D)	7.2σ	8.1σ	7.1σ	8.4σ

Z⁺(4200)

Preliminary results

$J^{P}=1^{+}$, other J^{P} are excluded

TABLE III.	The	fit	fractions	and	significances	of	all	reso-
nances in the	e defa	ult	model $(J$	P =	1 ⁺).			

Resonance	Fit fraction	Significance (local)
$K_0^*(800)$	$(7.1^{+0.7}_{-0.5})\%$	22.5σ
$K^{*}(892)$	$(69.0^{+0.6}_{-0.5})\%$	166.4σ
$K^{*}(1410)$	$(0.3^{+0.2}_{-0.1})\%$	4.1σ
$K_0^*(1430)$	$(5.9^{+0.6}_{-0.4})\%$	22.0σ
$K_{2}^{*}(1430)$	$(6.3^{+0.3}_{-0.4})\%$	23.5σ
$K^{*}(1680)$	$(0.3^{+0.2}_{-0.1})\%$	2.7σ
$K_{3}^{*}(1780)$	$(0.2^{+0.1}_{-0.1})\%$	3.8σ
$K_0^*(1950)$	$(0.1^{+0.1}_{-0.1})\%$	1.2σ
$K_{2}^{*}(1980)$	$(0.4^{+0.1}_{-0.1})\%$	5.3σ
$K_{4}^{*}(2045)$	$(0.2^{+0.1}_{-0.1})\%$	3.8σ
$Z_c(4430)^+$	$(0.5^{+0.4}_{-0.1})\%$	5.1σ
$Z_{c}(4200)^{+}$	$(1.9^{+0.7}_{-0.5})\%$	8.2σ