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Probabilistic Background 
Suppression Method (Q-Factor) 
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The Problem

Common to have a signal mixed with background 
▪ Common method to handle background is side-band subtraction 

▪ Problematic if kinematics of signal is different from 
background 

▪ Problematic if signal is a function of several variables  
▪ Binning such as in a Dalitz plot
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A Solution  
http://arxiv.org/abs/0809.2548

Probabilistic Weighting 
▪ Data set is comprised of n events where ei can be described by m 

coordinates, εj, where m is at minimum 2 
▪ ei(εj) (i = 1, n), (j=1,m) 

▪ coordinates can be angles, massed, energies...etc. 
▪ Data is made of signal S(εj) and background B(εj) 

▪ apriori knowledge of signal + background shape for one 
coordinate εr, reference coordinate 

▪ Goal of procedure is to identify the chance, for a given event ei, that 
the event is a signal event Q, or a background event (1-Q). 

▪ Use of distance measure (normalized Euclidean distance) 

▪   

▪ rk is the maximum distance in any pair of events

3

dij =
mX

k 6=2


(⇠k)i � (⇠k)j

rk

�2

http://arxiv.org/abs/0809.2548
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A Solution

Probabilistic Weighting 
▪ each event, ei, compute dij for all events in the data set 

▪ retain Nd closest to ei 

▪ Using Nd, fit the distribution composed of (εr)j, reference variables to 
the known signal and background 

▪ Use unbinned likelihood method to avoid binning issues 
▪ ROOSTATS and ROOFIT 

▪ signal si = fs((εr)i,η). Where fs(εr) is the function describing the 
signal with η fit paramters 

▪ background bi = fb((εr)i,η). fb(εr) is the function describing the 
background with η fit paramters 

▪   

4

Qi =
fs((⇠r), ⌘)i

fs((⇠r), ⌘)i + fb((⇠r), ⌘)i
=

si
si + bi
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Yield: 63793

Background: 17820

= 0.8S+B
S

σ 2.5 ±Range: 

 0.0826 GeV±Mean:781.8139 

 0.0812 GeV±:16.5787 σ

 ω p → p γ

Example
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Example
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Input  
▪ S(εj)  = Gaussian signal  
▪ B(εj)  = 1st order Chebyshev polynomial 

Coordinates with physics information  
▪ ei(ε1) = C.M. θ production frame 
▪ ei(ε2) = Beam Energy 
 
 

▪  
 

Note: Lab φ has no physics relation, however helicity frame φ does in some 
physics. Choose coordinate according to actual separable physics quantities 

 

dij =


cos ✓i � cos ✓j

2

�2
+


E(�)i � E(�)j

4.5

�2
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Circular Coordinates

7

Special concern needs to be addressed if using circular 
variables i.e. φ 

εr is closer to ε2 than ε1 

Must account for circular coordinate metric

εr

ε1
ε2

0π
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Fit Errors

8

2.2 Estimation of Errors

While the Q-factor as defined in equation 2 is a very useful tool in analysis, it is important
to be able to assign a reasonable error to a given Q

i

, �
Qi . We would also like to understand

how the individual �
Q

s are combined to yield the error on some measurable quantity. To
compute the error on Q, we will use the functional forms for the signal and background,
f

s

(~⌘) and f
b

(~⌘), and the covariance matrix of the fit parameters, C
⌘

. For Q, we have

Q(⇠
r

) =
f

s

(⇠
r

, ⌘)

f
s

(⇠
r

, ⌘) + f
b

(⇠
r

, ⌘)
. (7)

The error in Q can be written as

�2
Q

=
X

i,j

@Q

@⌘
i

(C
⌘

)�1
ij

@Q

@⌘
i

. (8)

In combining errors to yield a total error, we recall that there are two limiting cases. If
the errors are all completely uncorrelated, then the errors will add in quadrature to give

�2
total

=
nX

i=1

�2
i

.

In the case where the events are 100% correlated, the errors add as a simple sum

�2
total

=

 
nX

i=1

�
i

!2

.

If we consider how the Q values are determined, we note that for a given event, there is
very large correlations with the N

d

closest events. Probably something approaching 100%.
This correlation propogates throughout the entire data set, so in the end, there is a very
large correlation inherent in the procedure between any pair of Qs. This means that we
expect that the errors will add as if the events are correlated, rather than uncorrelated. This
correlated error is that which is associated with the procedure to determine Q. In addition
to this, there will also be an error associated purely with the statistics of the quantity being
measured.

If we are measuring the signal as a function of one of the observables, ⇠
j

, then we would
bin the n events in (⇠

j

)
i

. We define a bin function U(⇠
j

, l
j

, h
j

), where l is the lower and h is
the higher edge of the bin. The function U is 0 when ⇠

j

is outside of the bin and 1 when it
is inside the bin. The total number of events in a particular bin is then given in equation 9.

N =
nX

i=1

Q
i

· U((⇠
j

)
i

, l
j

, h
j

) (9)

The fit error on this number is given as

�
N

=
nX

i=1

�
Qi · U((⇠

j

)
i

, l
j

, h
j

) (10)

and the statistical error on the number of events is given by Poisson statistics. For large
vales of N , this is

p
N , however for small N , the error is estimated as shown in table 1. The

total error on N is then given as the statistical and fit errors added in quadrature.

4

�2
total

=
nX

i=1

(�2
Qi

+ �2
stat

)

@Q

@⌘i
=

@Q

@si

X

i

@si
@⌘i

+
@Q

@bi

X

i

@bi
@⌘i
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Example Code
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Individual Coding
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Example Code
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Individual Coding
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Example Code
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Individual Coding
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Example Code
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Individual Coding
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Example Code
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Individual Coding
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Example Code
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Individual Coding
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Calculating Error
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@Q

@⌘i
=

@Q

@si

X

i

@si
@⌘i

+
@Q

@bi

X

i

@bi
@⌘i

+
@Q

@f

Qi =
si

si + bi
=

fsi
fsi + (1� f)bi

Using RooFit composite model framework

Error of Q using composite model framework
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Individual Coding
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Example Code
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Individual Coding
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Example Code
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Individual Coding
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Example Code
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Individual Coding
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Example Code
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Individual Coding
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Example Code
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Individual Coding

Downfalls: 
▪ Coding is per person and per reaction based 
▪ Not distributable

22

Pros: 
▪ Not a blackbox. Not including whitespace and comments, methodology 

shown is 80 lines of code 
▪ Individual learns method
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 ω p → p γ

Yield: 63793

Background: 17820

= 0.8S+B
S

σ 2.5 ±Range: 

 0.0826 GeV±Mean:781.8139 

 0.0812 GeV±:16.5787 σ

 ω p → p γ

Example
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  Error = 0.007094

Results

24

Fit Error

Nearest Neighbor Plot
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Results
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Fit Error
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Results
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Caveats and Insights

Caveats: 
▪ There must be m coordinates greater that 1  
▪ Must know background and signal functions 

▪ Method is dependent on quality of this knowledge 
▪ CPU intensive 
▪ Time intensive

27

Insights: 
▪ Q can be calculated in multiple dimensions   
▪ Can reduce in-peak background depending on input coordinates 
▪ Method is dependent on quality of this knowledge
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Conclusion

Q-Factor 
▪ Separates signal from background 
▪ If done properly error on fit is minimum

28

Individual Method: 
▪ Easily coded 
▪ Time consuming

http://arxiv.org/abs/0809.2548
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Plot
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Plot
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