

HELMHOLTZ | GEMEINSCHAFT Helmholtz-Institut Mainz

Feasibility study of the rare decay $D^0 \rightarrow \gamma \gamma$ at PANDA

Donghee Kang

Helmholtz Institut Mainz, Universität Mainz

PANDA collaboration meeting, Vienna, Austria, 1 Dec. 2015

FI MHOLTZ

• Enhancement of $c \rightarrow u\gamma$ transition has a sign of beyond SM

Motivation

• Experimental observable is the branching ratio (BR)

D⁰D⁰ Cross section

HELMHOLTZ

$\overline{p}p \rightarrow D^0 \overline{D}^0 \rightarrow \gamma \gamma K^+ \pi^- (\text{Br} = 3.89\%)$

- PANDAroot : release oct14
- Signal MC : EvtGen
 Background MC : EvtGen, DPM, & FTF
- Double tag methods
- Pre-selection
 Neutral track : E > 50 MeV
 Charged track : p > 100 MeV/c

Two additional tag modes

$$\overline{p}p \to D^0 \overline{D}{}^0 \to \gamma \gamma K^+ \pi^- \pi^0 (\text{Br} = 13.9\%)$$

$$\overline{p}p \to D^0 \overline{D}{}^0 \to \gamma \gamma K^+ \pi^- \pi^- \pi^+ (\text{Br} = 8.09\%)$$

Event selection

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Signal	Tag		
$D^0 \rightarrow \gamma \gamma$	$\overline{D}^{0} \to K^{+} \pi^{-}$		
$P_{t}(D) < P_{t,max} + 0.2 \text{ GeV/c}$	$P_t(D) < P_{t,max} + 0.2 \text{ GeV/c}$		
$M_{\rm BC} > 1.84 \; {\rm GeV/c^2}$	$M_{\rm BC} > 1.85 \; {\rm GeV/c^2}$		
$-0.14 < \Delta E < 0.4 \text{ GeV}$	$-0.12 < \Delta E < 0.2 \text{ GeV}$		
π^0 veto	PID Prob(π ,K) > 0.25(upto 0.9)		
$\overline{p}p \to D^0 \overline{D}{}^0 \to \gamma \gamma K^+ \pi^-$			

$130^\circ < \Delta \phi_{ m DD} < 230^\circ$
$-0.99 < \cos \theta_{\rm CM} < 0.99$
4Constrain kinematic fit : $0 < \chi^2 < 20$
Only 1 best candidate by minimum χ^2
$3.715 \text{ GeV/c}^2 < \Sigma m_{4C-\text{fitted}} < 3.725 \text{ GeV/c}^2$

Beam constraint E and M

NES GUTENBERG

Tag 1	Tag 2	Tag 3
$D^0\overline{D}{}^0 o \gamma\gamma K^+\pi^-$	$D^0\overline{D}{}^0 o \gamma\gamma K^+\pi^-\pi^0$	$D^0\overline{D}^0 o \gamma\gamma K^+\pi^-\pi^-\pi^+$
DPM pion background $\overline{p}p \rightarrow X \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $\sigma = 374.7 \mu b$ Open charm background $\overline{p}p \rightarrow D^{0}\overline{D}^{0} \rightarrow K^{+}\pi^{-}\pi^{0}\pi^{0}$	DPM pion background $\overline{p}p \rightarrow X \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$ $\sigma = 658.8 \mu b$ Open charm background $\overline{p}p \rightarrow D^{0}\overline{D}^{0} \rightarrow K^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	DPM pion background $\overline{p}p \rightarrow X \rightarrow 2\pi^+ 2\pi^- \pi^0 \pi^0$ $\sigma = 2255.4 \mu b$ Open charm background $\overline{p}p \rightarrow D^0 \overline{D}^0 \rightarrow K^+ \pi^- \pi^- \pi^+ \pi^0 \pi^0$

- define main background from the study on the filtered DPM and EvtGen
- reduce statistics of background simulation by $\sigma=0.37 / 0.65 / 2.2 \text{ mb}$ instead of $\sigma=60 \text{ mb} \rightarrow N_{sim}\sim 10^9$ instead of $N_{sim}\sim 10^{11}$

DPM multi pion background $\overline{p}p \rightarrow \pi^+\pi^-\pi^0\pi^0$: N_{sim}=1.0 × 10⁸ events

Apply global PID cut to the tag side and find best background reduction

Tag mode	PID > 0.25	PID > 0.5	PID > 0.6	$\mathrm{PID} > 0.7$	PID > 0.8	PID > 0.9
$E_{CM} = 3.77 \; (GeV)$	Tag3		Tag1			Tag2
Sig. Efficiency (%)						
$\bar{D}^0 \to K^+ \pi^-$	21.58	17.56	16.23	14.87	13.32	11.18
$\bar{D}^0 \to K^+ \pi^- \pi^0$	11.70	8.63	7.80	7.13	6.43	5.51
$\bar{D}^0 \to K^+ \pi^- \pi^- \pi^+$	3.32	1.33	0.99	0.76	0.56	0.36
Bkg. reduction (%)						
$\bar{D}^0 \to K^+ \pi^-$	4.17×10^{-7}	7.13×10^{-8}	4.07×10^{-8}	2.03×10^{-8}	2.03×10^{-8}	0
$\bar{D}^0 \to K^+ \pi^- \pi^0$	6.30×10^{-6}	1.26×10^{-6}	6.20×10^{-7}	4.47×10^{-7}	3.05×10^{-7}	1.62×10^{-7}
$\bar{D}^0 \to K^+ \pi^- \pi^- \pi^+$	1.21×10^{-7}	2.03×10^{-8}	0	0	0	0

– before cut on the Σm_{Fitted}

- can be achievable to the level of $\epsilon_{Bkg}{<}10^{-8}$, but this is a upper limit before performing full statistics

Expected number of events

Experimental parameters : Luminosity, Branching fraction, and Cross section

US GUTENBERG

$$N_{sig} = L_{int} \times \sigma_{DD} \times \Sigma Br_D \times \varepsilon_{sig} \qquad L_{int} = 2 \text{ fb}^{-1} \text{ (t = 120 days)}$$

$$N_{Bkg}^{DPM} = L_{int} \times \sigma_{\pi^0} \times \varepsilon_{Bkg}^{DPM} \qquad Br(D^0 \to \gamma\gamma) = 1.0 \times 10^{-6}$$

$$N_{Bkg}^{D \to 2\pi^0} = L_{int} \times \sigma_{DD} \times \Sigma Br_D \times \varepsilon_{Bkg}^{D \to 2\pi^0} \qquad \sigma_{DD} = 100 \text{ nb}$$

Mode : $E_{CM} = 3.77 \text{ GeV}$	Efficiency	$N_{expected}$	comments
Signal			
$D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^-$	14.85%	61.5	
$D^0 \bar{D}^0 \rightarrow \gamma \gamma K^+ \pi^- \pi^0$	5.48%	22.7	
$D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^- \pi^- \pi^+$	1.31%	5.5	
DPM background			
$p\bar{p} \rightarrow \pi^0 \pi^0 \pi^+ \pi^-$	$< 2.03 \times 10^{-8} (2 \text{ events})$	$< 3.1 imes 10^4$	100 M events simulated
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^- \pi^0$	$< 4.06 \times 10^{-8} $ (4 events)	$< 1.1 \times 10^5$	(remaining event)
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^- \pi^- \pi^+$	$< 1.00 \times 10^{-8} (0 \text{ events})$	$<9.3\times10^4$	54 ALA (103
Open charm background			
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^-$	5.1×10^{-4}	179.4	
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^- \pi^0$	6.6×10^{-4}	230.6	
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^- \pi^- \pi^+$	5.2×10^{-5}	18.1	

- found ratio for two different background sources $S/B_{multi pion} < 1/10^3$ and $S/B_{open charm} \sim 1/5$
- 4 weeks @ GSI computing farm, but still missing one order of magnitude

Background shape

HELMHOLTZ GEMEINSCHAF Helmholtz-Institut Mainz

Argus distribution from multi pion background (DPM)

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

D⁰ peaking background via other open charm decay mode $D^0 \rightarrow \pi^0 \pi^0$

Expected distribution

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

- Dependence on S:B ratio
- Demanding S/B is below 1/100
- Open charm peaking bkg. from π^0 is still dominated

Expected distribution

HELMHOLTZ

- Extend to maximum energy E_{CM} =5.5 GeV
- \bullet open charm peaking bkg. is shifted to higher $\rm M_{BC}$
- number of signal event is expected to be small ~ 10

Statistical significance

- Open charm rare decay for $BR_{(D\to\gamma\gamma)}\!<\!2.2{\times}10^{-6}\,$ can be feasible with assuming of $\sigma_{DD}\!>\!100\,nb$
- Evaluate the size and shape of background and provide the significance map in sensitivity of cross section and $BR_{(D \rightarrow \gamma \gamma)}$
- Necessary further background reduction : one order of magnitude
- Above $E_{CM}=3.77$ GeV, there are other considerable channels $\overline{p}p \rightarrow D^0 \overline{D}^0 \rightarrow \gamma \gamma K_S^0 \pi^+ \pi^- (Br = 2.94\%)$ $\overline{p}p \rightarrow D^{0^*} \overline{D}^0, D^0 \overline{D}^{0^*}, D^{0^*} \overline{D}^{0^*}$
- Technical note: https://panda.gsi.de/publication/in-rep-2015-007.pdf

F HELMHOLTZ

Helmholtz-Institut Mainz

GEMEINSCHAFT

Backup

Open charm cross section

How much charm can PANDA produce? A.Khodjamirian, Ch.Klein, Th.Mannel and Y.M. Wang Eur.Phys.J.A 48 (2012) 31.

USE GLITENRE

D⁰bar D⁰ production at pbar p collisions within a double handbag approach, A.T.Goritschnig, B.Pire and W.Schwieger, Phys.Rev.D87 (2013) 014017

BESIII suggested [arXiv:1403.6011v1 24 Mar 2014] two different solution for D^0D^0 cross section using the $\psi(3770) \rightarrow pbarp$

either $\sigma = (9.8 \pm 5.7)$ nb or $\sigma = (425.6 \pm 42.9)$ nb

Branching ratio of $D^0 \rightarrow \gamma \gamma$

HELMHOLTZ

[Phys.Rev D82 094006 (2010)]

u

Ui

 \tilde{q}, χ_{I}^{0}

[Phys.Lett.B500 304-312 (2001)]

New Physics

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

HELMHOLTZ

DPM describe experimental data for relating $2\pi^0 / 3\pi^0 / 2\pi^0$ background channels well \rightarrow no sizable systematic uncertainty due to incorrect fraction

HELMHOLTZ

Extend to maximum energy E_{CM} =5.5 GeV: S/B_{peaking} is assumed to be 0.5

JOHANNES GUTENBERG

UNIVERSITÄT MAIN

Mode : $E_{CM} = 5.50 \text{ GeV}$			
Signal			
$D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^-$	4.16%	8.6	
$D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^- \pi^0$	1.88%	3.9	
$D^0 \bar{D}^0 \to \gamma \gamma K^+ \pi^- \pi^- \pi^+$	0.51%	1.1	
DPM Background			
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^-$	$< 3.48 \times 10^{-8} (1 \text{ events})$	$< 1.7 \times 10^3$	30 M events simulated
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^- \pi^0$	$< 3.42 \times 10^{-8} (1 \text{ events})$	$<4.1\times10^3$	(remaining event)
$p\bar{p} \to \pi^0 \pi^0 \pi^+ \pi^- \pi^- \pi^+$	$< 3.0 \times 10^{-8} (0 \text{ events})$	$<2.2\times10^5$	
Open charm background			
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^-$	3.62×10^{-5}	6.3	
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^- \pi^0$	1.20×10^{-4}	20.9	
$D^0 \bar{D}^0 \to \pi^0 \pi^0 K^+ \pi^- \pi^- \pi^+$	5.13×10^{-6}	0.9	

Background reduction

HELMHOLTZ

Helmholtz-Institut Mainz

Main background source

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

1.
$$\overline{p}p \to X \to \pi^+\pi^-(\pi^0,\eta,\gamma) \to \pi^+\pi^-3\gamma(\text{upto }8\gamma)$$

2.
$$\overline{p}p \rightarrow D^0 \overline{D}^0 \rightarrow \pi^0 \pi^0 K^+ \pi^- \pi^0$$

 $D^0 \rightarrow \pi^0 \pi^0 (Br = 8.4 \times 10^{-4})$

	Channel	σ (μb)
1	$\pi^+\pi^-3\pi^0$	658.867
2	$\pi^+\pi^-4\pi^0$	601.661
3	$\pi^+\pi^-2\pi^0$	374.696
4	$\pi^+\pi^-3\pi^0\eta$	289.990
5	$\pi^+\pi^-2\pi^0\eta$	249.004
6	$\pi^+\pi^-\pi^0$	126.814
7	$\pi^+\pi^-\pi^0\eta$	109.646
8	$\pi^+\pi^-2\pi^02\eta$	41.710
9	$\pi^+\pi^-3\pi^0\gamma$	31.438
10	$\pi^+\pi^-\pi^02\eta$	28.497
11	$\pi^+\pi^-4\pi^0\gamma$	28.068
12	$\pi^+\pi^-\eta$	14.801
13	$\pi^+\pi^-2\pi^0\gamma$	14.579
14	$\pi^+\pi^-2\pi^02\gamma$	13.374
15	$\pi^+\pi^-3\pi^02\gamma$	11.127
16	$π^+π^-3π^0$ γη	9.213
17	$\pi^+\pi^-2\eta$	8.122
18	$π^+ π^- 2 π^0$ γη	8.084
19	$\pi^+\pi^-\pi^0 2\gamma$	7.531
20	$\pi^+\pi^-\pi^0\gamma$	4.683
24	$π^+π^-2$ γη	1.047
Σ		2455.320

GL

Background reduction

Main background source	BR Channel	decay mode
1. $\overline{p}p \to X \to \pi^+\pi^-(\pi^0,\eta,\gamma) \to \pi^+\pi^-3\gamma$ (upto	(5.8γ) $(0.0006 \text{ K- pi0 } e^+ \text{ nu}_e)$ $(0.0006 \text{ K- pi0 } mu^+ \text{ nu}_m)$ $(0.0212 \text{ anti-K0 pi0})$ $(0.1390 \text{ K- pi+ pi0})$ (0.0205 K*PP)	PHOTOS PHSP; PHOTOS PHSP; PHSP; D_DALITZ;
2. $\overline{p}p \rightarrow D^0 \overline{D}^0 \rightarrow \pi^0 \pi^0 K^+ \pi^- \pi^0$ $D^0 \rightarrow \pi^0 \pi^0 (Br = 8.4 \times 10^{-4})$	0.0085 K*BR pi0 0.0071 anti-K_10 pi0 0.0078 anti-K0 pi0 pi0 0.0116 anti-K*0 pi0 pi0 0.0100 K*- pi+ pi0 0.0068 K- rho+ pi0	SVS; SVS; PHSP; PHSP; PHSP; PHSP;
51 4000 3500 3500 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000	0.0085 anti-K0 pi+ pi- pi 0.0258 K- pi+ pi0 pi0 0.0143 anti-K0 pi0 pi0 pi 0.0038 K- pi+ pi+ pi- pi0 0.0038 K- pi+ pi0 pi0 pi0 0.0638 anti-K0 pi+ pi- pi0 0.0192 anti-K0 pi+ pi- pi0 0.0007 phi pi0 0.0030 K+ K- pi0 pi0	 PHSP; PHSP; PHSP; PHSP; PHSP; PHSP; pi0 PHSP; pi0 pi0 PHSP; SVS; PHSP;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0015 anti-K0 K0 pi0 pi 0.0008 pi0 pi0 0.0010 eta pi0 0.0010 eta' pi0 0.0020 rho0 pi0 0.0060 pi+ pi- pi0 0.0010 pi0 pi0 pi0 0.0050 pi+ pi- pi0 pi0 0.0177 pi+ pi pi0 pi0) PHSP; PHSP; PHSP; PHSP; SVS; PHSP; PHSP; PHSP; PHSP; PHSP;
m(γγ) (GeV/c ²)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PHSP; PHSP; PHSP;

List of background subset

	$D^0\overline{D}{}^0 \to \gamma\gamma K^+\pi^-$		$D^{0}\overline{D}^{0} \to \gamma\gamma K^{+}\pi^{-}\pi^{0}$		$D^0\overline{D}{}^0 \to \gamma\gamma K^+\pi^-\pi^-\pi^+$	
	Channel	σ (μb)	Channel	σ (μb)	Channel	σ (μb)
1	$\pi + \pi - 2\pi^{0}$	374.696	$\pi + \pi - 3\pi^0$	658.867	$2\pi + 2\pi - 2\pi^0$	2255.403
2	$\pi + \pi - \pi^0$	126.814	$\pi + \pi - 4\pi^{0}$	601.661	$2\pi + 2\pi - \pi^0$	1189.368
3	$\pi + \pi - \pi^0 \eta$	109.646	$\pi + \pi - 2\pi^{0}$	374.696	$2\pi + 2\pi - \pi^0 \eta$	515.681
4	π+π-η	14.801	$\pi + \pi - 3\pi^0\eta$	289.990	2π+2π-η	155.669
5	$\pi + \pi - 2\pi^{0}\gamma$	14.579	$\pi + \pi - 2\pi^0 \eta$	249.004	$2\pi + 2\pi - 2\pi^{0}\gamma$	113.998
6	π+π-2η	8.122	$\pi + \pi - \pi^0 \eta$	109.646	$2\pi + 2\pi - \pi^{0}\gamma$	54.200
7	$\pi + \pi - \pi^0 2\gamma$	7.531	$\pi + \pi - 2\pi^{0}2\eta$	41.710	$2\pi + 2\pi - 2^{\eta}$	29.245
8	$\pi + \pi - \pi^0 \gamma$	4.683	$\pi + \pi - 3\pi^0 \gamma$	31.438	$2\pi + 2\pi - \pi^0 \gamma \eta$	20.193
9	$\pi + \pi - 2\gamma$	1.397	$\pi + \pi - \pi^0 2\eta$	28.497	$2\pi + 2\pi - \pi^0 2\gamma$	19.577
10	π+π-2γη	1.047	$\pi + \pi - 2\pi^0 \gamma$	14.579	$2\pi + 2\pi - 2\gamma$	8.007
11			$\pi + \pi - 2\pi^0 2\gamma$	13.374	2π+2π-γη	5.639
12			$\pi + \pi - 3\pi^0 2\gamma$	11.127	2π+2π-2γη	2.294
13			$\pi + \pi - 2\eta$	8.122		
14			$\pi + \pi - 2\pi^0$ γη	8.084		
15			$\pi + \pi - \pi^0 2\gamma$	7.531		
16			$\pi + \pi - 2\pi^0 2\gamma\eta$	3.195		
17			$\pi + \pi - \pi^0 2\gamma \eta$	2.757		
18			$\pi + \pi - 2\gamma\eta$	1.047		