

X(3872)-Scan Reloaded

PANDA CM Vienna Charmonium Exotics Session

1. Dec. 15

K. Götzen GSI Darmstadt

Idea

• Nature of X(3872)

Need lineshape and width to understand structure

- Approach at PANDA
 - Fine scan around nominal mass
 - \rightarrow energy dependent cross section
- Analysis goals
 - Sensitivity of Γ measurement (conventional BW)
 - Sensitivity for virtual/bound state (molecular picture)
- Analysis strategy
 - Analysis of X(3872) \rightarrow J/ $\psi(\ell^+\ell^-) \rho^0(\pi^+\pi^-)$ channel only
 - Full sim/reco \rightarrow signal + background efficiencies ϵ_{S} and ϵ_{B}
 - Toy MC scan simulation with assumption for cross sections, integrated luminosities, BRs

Molecular Picture (Hanhart et al)

- Lineshapes from [Kalashnikova et al, Phys. Atom. Nucl. 73 (2010) 1592]
- Here only interested in X(3872) \rightarrow J/ $\psi~\pi^+\pi^-$

$$\frac{d\operatorname{Br}(B \to K\pi^+\pi^- J/\psi)}{dE} = \mathcal{B}\frac{1}{2\pi}\frac{\Gamma_{\pi^+\pi^- J/\psi}(E)}{|D(E)|^2}$$

(assuming lineshape as in B decays)

•
$$D(E) = \begin{cases} E - E_f - \frac{g_1 \kappa_1}{2} - \frac{g_2 \kappa_2}{2} + i \frac{\Gamma(E)}{2}, & E < 0, \\ E - E_f - \frac{g_2 \kappa_2}{2} + i \left(\frac{g_1 k_1}{2} + \frac{\Gamma(E)}{2}\right), & 0 < E < \delta, \\ E - E_f + i \left(\frac{g_1 k_1}{2} + \frac{g_2 k_2}{2} + \frac{\Gamma(E)}{2}\right), & E > \delta, \end{cases}$$

•
$$\Gamma(E) = \Gamma_{\pi^+\pi^- J/\psi}(E) + \Gamma_{\pi^+\pi^-\pi^0 J/\psi}(E) + \Gamma_0$$

 $\Gamma_{\pi^+\pi^- J/\psi}(E) = f_\rho \int_{2m_\pi}^{M-m_{J/\psi}} \frac{dm}{2\pi} \frac{q(m)\Gamma_\rho}{(m-m_\rho)^2 + \Gamma_\rho^2/4}$
 $\Gamma_{\pi^+\pi^-\pi^0 J/\psi}(E) = f_\omega \int_{3m_\pi}^{M-m_{J/\psi}} \frac{dm}{2\pi} \frac{q(m)\Gamma_\omega}{(m-m_\omega)^2 + \Gamma_\omega^2/4}$

Parameter E_f determines state to be bound or virtual

Lineshapes for different E_f

Reconstruction Part

Parameters

	Parameter	Value		
Branching Fractions	$BR(J/\psi \rightarrow e^+ e^-)$	5.97 %		
	$BR(J/\psi \rightarrow \mu^+ \mu^-)$	5.96 %		
	$BR(X \to J/\psi \; \rho^0)$	5 % (assumption)		
	$\sigma(\bar{p}p \rightarrow X)$	50 nb (assumption)		
Cross sections	$\sigma(\bar{p}p \rightarrow J/\psi \ \pi^+\pi^- \ non-res)^*$	1.2 nb (theory)		
	$\sigma(\bar{p}p \rightarrow \text{inelastic}) @ 3.872 \text{ GeV}$	46 mb		
Luminosities	L _{HL} (3.872 GeV)	13683 (nb·d)⁻¹		
	L _{HR} (3.872 GeV)	1368 (nb⋅d)⁻¹		
	L _{HESRr} (3.872 GeV)	1170 (nb·d) ⁻¹		
Resolutions	$\sigma_{E,abs}$ (absolute energy positioning)	100 keV (assumption)		
	$\sigma_{E,rel}$ (relative energy positioning)	10 keV (assumption)		
	$\sigma_{E,beam}(HL)$	168 keV		
	σ _{E,beam} (HR/HESRr)	67 keV		
		*[PRD 77 (2008) 097501]		

Software and Data

• Software

- PandaRoot: Revision 28670
- FairSoft: mar15p2
- FairRoot: v15.03
- Data @ E_{cm} = 3.872 GeV

Channel	#Events
$\bar{p}p \rightarrow J/\psi \ \rho^0 \rightarrow e^+e^- \ \pi^+\pi^-$	98k
$\bar{p}p \rightarrow J/\psi \ \rho^0 \rightarrow \mu^+\mu^- \ \pi^+\pi^-$	100k
$\bar{p}p \rightarrow J/\psi (\rightarrow e^+e^-) \pi^+\pi^- (NR)$	100k
$\bar{p}p \rightarrow J/\psi (\rightarrow \mu^+\mu^-) \pi^+\pi^-(NR)$	99k
DPM (J/ $\psi \rightarrow e^+ e^-$ prefilter)	≈10M = 9.58G generated
DPM (J/ $\psi \rightarrow \mu^+ \mu^-$ prefilter)	≈10M = 8.87G generated

Background Prefilter QA

- Filtering criteria
 - Require 4 charged tracks
 - Require one 2-track combination : $m_{ee/\mu\mu} > 2.8 \text{ GeV/c}^2$
 - Suppression factor e^+e^- : $\approx 1/1000$
 - Suppression factor $\mu^+\mu^-$: $\approx 1/900$
- Check filter bias (µµ only)
 - Cross check with criterion $m_{\mu\mu} > 2.5 \text{ GeV/c}^2 (10M \rightarrow 2.6G)$
 - Slight difference at lower mass edge
 - Total integral difference: 1.9%
 - Difference in J/ ψ ROI: 0.4%
 - ⇒ Negligible effect!

Signal Reconstruction

- Preselection e⁺e⁻:
 - Particle Identification : ElectronTight, PionAll (PidAlgoEmcBayes;PidAlgoDrc;PidAlgoDisc;PidAlgoStt;PidAlgoMdtHardCuts)
 - J/ ψ \rightarrow e⁺e⁻ mass window: 2.0 < m(e⁺e⁻) < 3.4 GeV/c²
 - $\rho^0 \rightarrow \pi^+\pi^-$ mass window: 0.27 < m($\pi^+\pi^-$) < 1.0 GeV/c²
 - $\ \bar{p}p \rightarrow J/\psi \ \rho^0 \ 4C \ fit \qquad : \chi^2 < 200$
- Preselection $\mu^+\mu^-$:
 - Particle Identification : MuonTight, PionAll (PidAlgoEmcBayes;PidAlgoDrc;PidAlgoDisc;PidAlgoStt;PidAlgoMdtHardCuts)
 - J/ $\psi \rightarrow \mu^+\mu^-$ mass window: 2.5 < m($\mu^+\mu^-$) < 3.4 GeV/c²
 - $\rho^0 \rightarrow \pi^+\pi^-$ mass window: 0.27 < m($\pi^+\pi^-$) < 1.0 GeV/c²
 - $\ \bar{p}p \rightarrow J/\psi \ \rho^0 \ 4C \ fit \qquad : \chi^2 < 100$

Correlation M($\ell^+\ell^-$) vs. M($\pi^+\pi^-$)

Correlation M($\ell^+\ell^-$) vs. M($\pi^+\pi^-$)

pp System after Preselection

$\bar{p}p \rightarrow J/\psi \ \rho^0 \rightarrow e^+ e^- \pi^+ \pi^-$

 $\bar{p}p \rightarrow J/\psi \ \rho^0 \rightarrow \mu^+ \ \mu^- \ \pi^+ \ \pi^-$

Final Selection Criteria

- Final selection e⁺e⁻
 - Electron $PID(e^{\pm}) > 0.95$
 - $m(e^+e^-) > 2.7 \text{ GeV/c}^2$
 - $p(e^+e^-) > 4.6 \text{ GeV/c}$
 - $p_{cm}(e^+e^-) < 0.38 \text{ GeV/c}$
 - $\not = (p_{e+}, p_{e-}) < 2 \text{ rad}$
- Final selection $\mu^+\mu^-$
 - Muon PID(μ^{\pm}) > 0.99
 - $p_{cm}(\mu^+\mu^-) < 0.32 \text{ GeV/c}$
 - $p_{cm}(\mu^{\pm}) > 1.37 \text{ GeV/c}$

Final Selection Results

$$J/ψ → e^+e^-$$

ε_s = 11.4%
ε_{B,nr} = 3.5%, ε_{B,hd} = 2.6 · 10⁻¹¹
S:N = 4.6 : 1

$$\begin{split} J/\psi &\to \mu^{+}\mu^{-} \\ \epsilon_{S} &= 14.0\% \\ \epsilon_{B,nr} &= 2.7\%, \ \epsilon_{B,hd} &= 1.1 \cdot 10^{-10} \\ \text{S:N} &= 3:1 \end{split}$$

Energy Scan Part

Possible Approaches

Two obvious approaches possible to extract lineshape:

- 1. Cut on J/ψ and count
 - simple + robust
 - all backgrounds still in scanned lineshape
- 2. Fit signal in J/ψ mass
 - removes hadronic bkg
 - NR bkg still present

Show 2. method here being slightly better than 1.

Uncertainty Assumptions for Scan

- Beam related energy resolution: $\sigma_{E,beam} = 67(HR) / 168(HL) \text{ keV}$
- Absolute positioning resolution: $\sigma_{E,abs} = 100 \text{ keV}$ (shift)
- Relative positioning resolution: $\sigma_{E,rel} = 10 \text{ keV} (\sim \text{ error in } E_{cm})$

Procedure for Individual Scan

Scan procedure

- Set parameter P (Γ or E_f) in signal function
- Define scan region, number of points, L_{int} / point
- − Scale unfolded function $\sigma_{s}(E)$ to $\sigma_{s,max} = 50$ nb and adapt convoluted function $\sigma_{s}'(E) \rightarrow \sigma_{s,max}' \le 50$ nb
- For each energy scan point (E_{cm})
 - 1. Modify energy $E_{cm} \rightarrow E_{cm}'$ due to $\sigma_{E,abs}$ and $\sigma_{E,rel}$ (Uncertainty for i-th scan point $\Delta E_{cm,i} = \sqrt{i} \cdot \sigma_{E,rel}$)
 - 2. Compute expected S_0 / B_{hd,0} / B_{nr,0} based on $\sigma_{\rm S}'(E_{\rm cm}')$ / $\sigma_{\rm B,hd}$ / $\sigma_{\rm B,nr}$
 - 3. Generate Poissonians S / B_{hd} / B_{nr} from expected numbers
 - 4. Generate J/ψ data with S+B_{nr} signal and B_{hd} background events
 - 5. Do unbinned ML fit to extract $N_{J/\psi} \xrightarrow{+ \Delta N_{hi}}{- \Delta N_{lo}} \rightarrow$ Scan graph at E_{cm}
- Fit graph with signal + background function \rightarrow parameter P
- Repeat N times to determine root-mean-square & bias of P

Lineshape Examples

Generated J/ ψ Plots Examples

- Signal pdf like in true reco; hadr. background flat
- Scale efficiencies from ROI to full window width ($\epsilon_S \times 1.1$, $\epsilon_B \times 4$)

Illustration for Scan

Investigated Scenarios

• Luminosity modes ($E_{cm} = 3.872 \text{ GeV}$): $N_L = 3$

Mode	HL	HR	HESRr
L _{int} [(nb·d) ⁻¹]	13683	1368	1170

• Parameter settings: $N_P = 8$

BW	Г [keV]	50	70	100	130	180	250	500	800
Molecule	-E _f [MeV]	14	12	10	9	8	7	6	5

Investigated scenarios: N_s = 5

Mainly show results for this one

Scan time [month]	1.5	2	2	2	10
Points $ imes$ days	21 x 2	21 x 3	31 x 2	61 x 1	61 x 5

Toy MC fits: N_{MC} = 100 ... 300 (N_{tot} ≈ 50000)

Physics mode	Breit-Wigner Г	Molecule E _f
Number of fits	150 300 / setup	100 / setup

Scan Examples Breit Wigner

HESRr: 21 x 2 days $\Gamma = 50 \text{ keV}$

HL: 61 x 5 days Γ = 100 keV

Scan Examples Molecule Lineshape

HR: $21 \times 2 \text{ days}$ E_f = -5 MeV

HL: 31 x 2 days E_f = -12 MeV

Sensitivities Breit-Wigner Γ (31 x 2d)

- Extract standard deviation and bias from toy MC fits (ML)
- Show relative error $\text{rms}_{\text{fit}}/\overline{\Gamma}_{\text{fit}}$ and bias $(\overline{\Gamma}_{\text{fit}} \Gamma)/\Gamma$ in [%]

Sensitivities Molecule Lineshapes (31 x 2d)

- Extract standard deviation and bias from toy MC fits
- How well can virtual and bound state be distinguished?
- Uncertainty = $\sigma_{Gaussian} \rightarrow Integrate$ in mismatch region

Probability of Mismatch (31x2d)

• How do the lineshapes look like?

Summary

- Investigation of X(3872)-Scan at PANDA in various scenarios
- Determined sensitivity for BW width measurement
 - − Reach Γ/σ_{Γ} > 3 at $\Gamma \ge$ 130 keV (2 months data)
 - − For $\Gamma \ge 100$ keV bias $\Delta\Gamma/\Gamma \le 5\%$ (")
 - HL mode superior for Γ > 180 keV
- Determined sensitivity for molecular lineshape measurement
 - Possible to distinguish bound/virtual state
 - Outside $\Delta E_f = 2.25$ MeV trans. region P > 95% for correct id.
 - HL and HR modes seem comparable
- Further steps
 - Improve suppression of J/ ψ $\pi^{+}\pi^{-}$ NR background
 - Start writing analysis document

BACKUP

Background Prefilter

- Reasonable S/N sensitivity: need huge amount of BG
- Example calculation:
 - Signal: σ_{S} = 50 nb, $\text{BR}_{\text{J/}\psi}$ = 0.06, BR_{X} = 0.05, ϵ_{S} = 20%
 - Background: $\sigma_B = 46 \text{ mb}$ (inelastic @ $E_{cm} = 3.872 \text{ GeV}$)

$$\frac{S}{N} = \frac{\sigma_S \cdot \varepsilon_S}{\sigma_B \cdot \varepsilon_B} \cdot BR_{J/\psi} \cdot BR_X \stackrel{!}{\ge} 1$$
$$\Rightarrow \varepsilon_B < \frac{\sigma_S \cdot \varepsilon_S}{\sigma_B} \cdot BR_{J/\psi} \cdot BR_X = 6.5 \cdot 10^{-10}$$
$$\Rightarrow N_B > 1/\epsilon_B = 1.5 \cdot 10^9$$

- Neither feasible nor efficient to simulate completely
- Use FairFilteredPrimaryGenerator to filter already at generator level

Final Selection $J/\psi \rightarrow e^+e^-$ Channel

Final Selection $J/\psi \rightarrow \mu^+\mu^-$ Channel

Criteria for $J/\psi \rightarrow e^+e^-$ Channel

Criteria for $J/\psi \rightarrow \mu^+\mu^-$ Channel

Flatness Check of Cuts

- We want to interpolate background in ROI
 - Cuts should not distort background shape!

preselection after cut

Flatness Check of Cuts

01.12.2015

Sensitivities Molecule Lineshapes (31 x 2d)

- Extract standard deviation and bias from toy MC fits
- How well can virtual and bound state be distinguished?

