PANDA-EMC Meeting Vienna, December 1, 2015

Status on developments @ GI

- development on PbWO₄ @ CRYTUR and SICCAS
 PROTO 120
 - details on de-polished crystals (S. Diehl)
- Resources @ GI
 - APD irradiation
 - quality control of crystals @GI and CERN
 - barrel mechanics and assembly

New lead tungstate crystal production for High-Energy Physics experiments based on the Czochralski technique

R. W. Novotny^a, V. Dormenev^a, M. Korjik^b, J. Houzvicka^c, H.-G. Zaunick^a

^aJustus-Liebig-Universität, II. Physikalisches Institut, Giessen, Germany ^bInstitute for Nuclear Problems, Minsk, Belarus ^cCRYTUR, spol. s.r.o., Turnov, Czech Republic

- the PbWO₄ quality for PANDA@FAIR: PWO-II
- alternative producer: SICCAS
- startup @ CRYTUR
- the achievements up to now
- summary and outlook

Target Spectrometer *ⓐ* **PANDA:**

based on high-quality PWO-II

physical goals of PANDA require further development

	PWO-I (CMS)	PWO-II (PANDA)
luminescence maxi- mum. nm	420	420
La, Y concentration level, ppm	100	40
expected energy range of EMC	150MeV - 1TeV	10MeV - 10GeV
light yield, phe/MeV at room temperature	8-12	17-22
EMC operating tem- perature, °C	+18	-25
energy resolution of EMC at 1GeV, %	3,4	2,0

optical longitudinal transmission

property	condition	specification
longitudinal	at 360nm	\geq 35%
transmission	at 420nm	$\geq 60\%$
	at 620nm	\geq 70%
uniformity of transv. transmission	wavelength at $T=50\%$	$\Delta\lambda\leq$ 3nm

light yield @ 18°C

BTCP

radiation hardness

BTCP

tested using γ -rays: ~ 1.2 MeV 60 Co integral dose: 30Gy

$$\Delta k = \ln \left(\frac{T_{bef}}{T_{after}} \right) \cdot \frac{1}{d}$$

acceptance limit: $\Delta k < 1.1 \text{ m}^{-1}$

• former production @ SICCAS, Shanghai, China

CRYTUR – Turnov, Czech Republic

- long tradition in the production of inorganic scintillators
 restart of PWO production in summer 2014
 - production based on Czochralski technology
 - use of existing pre-mixture of raw material (*NeoChem*, Moscow)
 - network: close collaboration with *RINP* Minsk and *IPAS* Prague

initial survey: production of small ingots under various conditions

Crystal sample	Growing conditions: atmosphere , dopants	
1 Тор	Air, undoped	
2 Тор	Air, Y 42 ppm	
2 Bottom	Air, Y 48-62 ppm	
3 Тор	Air, Y 82-87 ppm	
3 Bottom	Air, Y 96-123 ppm	
5 Тор	N_2 + 0.1% O_2 , undoped	
5 Bottom	N_2 + 0.01% O_2 , undoped	
6 Тор	N ₂ + 0.1% O ₂ , La+Y 207 ppm	
6 Bottom	N ₂ + 0.1% O ₂ , La+Y 131 ppm	J
7 Тор	Air, La+Y 207 ppm	
7 Bottom	Air, La+Y 140 ppm	
PWO1 Top	Air	
PWO2 Top	Air	
PWO 2 Bottom	Air	
PWO3 Top	Argon	
PWO3 Bottom	Argon	
PWO	Air+ dopants	

samples cut from **top** and **bottom** part of the ingot

first full size ingots:

grown in Ar atmosphere and doped with La+Y

dimension: 20x20x200mm³

20

improved sample: no coloring or macro defects

last sample: 20x20x169 mm³

the most recent sample (#40): bottom part (1.2cm)

the most recent sample (#40): bottom part

further fine-tuning of the growing technology:

- pre-crystallization of the raw material
- temperature stabilization of the melt
- optimum concentration and homogeneity of the dopants

Outlook

- pre-production run: 100-150 crystals (Uppsala, GI)
- for calorimetry @ PANDA and future set-ups @ Jlab, ...
 - NPS @ Jlab
 - upgrade @ BNL S-PHENIX
 - JRA @ HadronPhysics 3 (Carlos Munioz)
- SICCAS: limited quality

however, at least 2 manufacturers on the market readiness for negotiations: summer 2016 remaining pre-mixed raw material has to be purchased (14t @ NeoChem @ Moscow) two most recent publications: TNS (SCINT2015) Conf.Rec. IEEE NSS 2015

Ongoing activities: I

- limited resources 2015-16
- **PROTO120**
 - next test @ MAMI : Dec. 11-13, 2015
 - two 5x5 matrices
 - APFEL-ASIC, readout,
 - new mechanics, new cooling concept
 - monitoring from front side
 - implemented LEDs for recovery
 - readiness still open !

Ongoing activities: II

- APD irradiation: not yet started
- quality control for pre-production
 ACCOS @ CERN again available
- final concept for complete slice
 - conclusions based on PROTO120
 - modifications and finalizing of design
 - assembly of first slice
 - readiness for mass production in fall 2016