HADRON PRODUCTION WITH HADES

Pavel Tlustý, NPI Řež

for the HADES collaboration

- motivation: study of hadron production at SIS energies
- status: pion & strangeness data from HADES
- experiments at SIS100 basic considerations

April 27, 2009

Workshop on Nuclear Matter Physics at SIS100

Motivation

- pions

charged pion multiplicities used for normalization of dilepton spectra new data from the same experiment – same setup and trigger, wide acceptance

- Κ, Φ, Λ, ...

equation-of-state in-medium modification of hadrons (mass/width) kaon/lambda-nucleon potential

- at 1-2 A GeV $\,$ strangeness production close to the NN-threshold \rightarrow sensitive probes
- at ~ 10 A GeV higher baryon densities
 - production higher by 2 orders of magnitude
 - new particles and effects: antiprotons, multistrange baryons, strangeness enhancement

What is K-N potential ?

HADES

A <u>High-Acceptance</u> <u>Di-Electron</u> <u>Spectrometer</u>

- Beams from SIS18: pions, protons, nuclei
- Spectrometer with high invariant mass resolution (2% at ρ/ω mass) and powerful PID capabilities : p/π/K/e±
- Versatile detector for rare particle decays :
- dielectrons (e+,e-)
- strangeness: Λ , $K^{\pm,0}$, ϕ

Geometry

Full azimuth, polar angles 18° - 85°

A+A systems measured: C+C @ 1 and 2A GeV, Ar+KCI @ 1.76A GeV

Charged Particle Identification $\underline{TOF(44^\circ < \rightarrow < 88^\circ)}$ \underline{MDC}

Pions - Ar+KCl 1.76 A GeV

π multiplicities

Ar+KCI 1.76A GeV

G. Agakishiev et al., EPJ A 40 (2009) 45-59

K^+ , K^- , ϕ differential production rates

K-/ ϕ ratio

Agreement with Kaon systematics

• For NN at threshold $\phi/K^2 = 1.02\pm0.1$

ANKE coll. PHYS. REV. C 77, 015204 (2008)

- ϕ/K^{-} in Ar+KCl is ~ 3 smaller -> more K⁻ thanks to medium (i.e strangeness exchange)
- ...but reactions of the type NN->NN ϕ and NN->NNK⁺K⁻ (non-resonant) are important,too !

Invariant Mass Spectra of Λ and K⁰

Kaon-Nucleon Potential

→KN-Potential is repulsive with a strength of U=30 MeV @ $\rho = \rho_0$

→KN-Potential is repulsive with a strength of U=20 MeV

Future experiments

2009	HADES upgrade: RPC TOF: 50-80ps resolution, high granularity		
2010-2012 SIS18	Ni+Ni 1-1.93A GeV Ag+Ag 1.65A GeV Au+Au 1A GeV	dielectrons, strangeness	
	π +N , π +A	resonances, radiative decays, strangeness	
2013-	8A GeV		
SIS100			

increase of M(K) by 2 orders of magnitude

Centrality selection by the LVL1 triggerAr+KCI 1.76 A GeVNi+Ni 8.0 A GeV

exp. and simulated multiplicities

Acceptance for hadrons

> URQMD and PLUTO events filtered with HADES acceptance

Acceptance for hadrons

URQMD and PLUTO events filtered	particle	$2 \ AGeV$	8 AGeV
with HADES acceptance	π^+	0.63	0.50
✓ midrapidity covered at both 2.0 and 8.0 AGeV $✓$ 15 % reduction at 8 AGeV for π		0.73	0.43
✓ 40 % reduction at 8 AGeV for K	р	0.40	0.15

Occupancy estimation at 8 AGeV

Simulated events

✓ central Au+Au at 1.5 AGeV and 8 AGeV, C+C at 2.0 AGeV and 8 AGeV \checkmark HGeant used for a realistic detector modeling

Main outcome \triangleright

 \checkmark from C+C at 2.0 AGeV \rightarrow Au+Au at 1.5 AGeV (SIS18) - factor of 14

✓ at Au+Au at 1.5 AGeV expected 20% double hit probability !!!

 \rightarrow corresponds to Ni+Ni at 8 AGeV - heaviest system at SIS 100

> hadron spectroscopy by HADES

✓ high quality, wide acceptance and high statistic data taken for π^{\pm} , Λ , K[±], K⁰, Φ from Ar+KCl @ 1.76A GeV

> upgrade projects finished by 2009

- ✓ better time resolution (PID) and granularity
- ✓ ready for ¹⁹⁷Au+ ¹⁹⁷Au@SIS18
- \checkmark realistic simulations are being performed

> from SIS18 to SIS100

- ✓ looks feasible
- \checkmark Ni+Ni the heaviest system planned at SIS100

The Collaboration

Under investigation...!

