

CBM physics at SIS100

Physics highlights:

Equilibration mechanism In-medium effective masses / potentials / EOS Bound strange baryonic states

Excitation function of particle production

(stunoo) 14000

Wp12000

8000 6000 4000

2000 0

1000

800

600

400

200

1.2

14 days data taking)

URQMD MOD.: M. Bleicher, NPA 715 (2003) 85

3/18

FOPI data for AI+AI at 1.92 AGeV

Statistical model analysis with THERMUS code (K. Piasecki)

How can the phase space be populated statictically? Problem with data reconstruction? → Sufficient statistics System mass dependence

Ultimate goal: triple differential cross section consistent description of all particles species \rightarrow theory

Production: $P \sim exp(-m^*/T) \rightarrow K$ -yields

Propagation: $F=-\nabla U \rightarrow K$ -flow

Kaon and antikaon elliptic flow

Kaon and antikaon have different sign. Antikaon elliptic flow strongly in-plane.

Available statistics in FOPI (2008):

N_{ev} ~ 10⁸, K⁻ ~ 5000, K⁺ ~ 95000

N.Herrmann, Uni-HD

For relevant statistical errors: N(K⁻) >50000 !

Data: P. Chung et al. (E895), PRL85, 940 (2000)

Theo: S. Pal et al., Phys.Rev.C62:061903, (2000)

Very strong kaon antiflow signal, as big as proton flow (opposite sign)!

Kaon and Antikaon sideflow

K⁻ - sideflow shows non monotoneous rapidity dependence.

 K^{\pm} , π^{\pm} , p measurement with large phase space coverage and with sufficient statistics needed.

URQMD acceptance simulations: 4AGeV

Charged Kaon acceptance with 3\sigma – TOF separation:

E _{lab} (AGeV)	4	6	8
ε	77%	64%	55%

Coverage of low – p_t range of the spectrum !

However:

Limited p_t acceptance at midrapidity (e.g. for $v_2(p_t)$) for $E_{beam} < 4$ AGeV

CBM geometrical acceptance

Pluto simulations (K. Piasecki, PI-HD)

Thermal Φ – source at 3 AGeV

Geometrical acceptance efficiency

Only upper polar angle limitation for decay products is considered !

11/18

Geometrical acceptance (cont'd)

Relevant range from Ni+Ni at 1.93 AGeV

N.Herrmann, Uni-HD

12/18

T.Yamazaki, HFD2006

K^{bar} Nuclear Clusters $\rho_{av} \sim 3 \rho_0 !!$

Why high-density nuclei possible ? Against the nuclear physics "law" of ρ = const.

Normally: N-N hard-core: quark Pauli blocking + gluon entanglement Exceptional: K⁻ = s u^{bar}: no u,d quark: no Pauli repulsion; strong attraction in u-u^{bar} and d-d^{bar}

Prediction of bound states based on deep optical potential: Y. Akaishi, T.Yamazaki, Phys.Rev.C65, 044005 (2002), Phys.Lett.B535, (2002)

Evidence for (ppK⁻)_{bound} by FINUDA @ DaΦne

Invariant mass spectroscopy $ppK^- \rightarrow \Lambda + p$

M. Agnello et al., PRL 94, 212303 (2005)

FIG. 3. Invariant mass of a Λ and a proton in back-to-back correlation ($\cos\theta^{\text{Lab}} < -0.8$) from light targets before the acceptance correction. The inset shows the result after the acceptance correction for the events which have two protons with well-defined good tracks. Only the bins between 2.22 and 2.33 GeV/ c^2 are used for the fitting.

Production probability: $P \cdot BR = 0.1\%$ per stopped K⁻ **Peak parameter:** $M = 2.255 \pm 0.009$ GeV

 $B = 115^{+6+3}_{-5-4} \text{ MeV}$ $\Gamma = 67^{+14+2}_{-11-3} \text{ MeV}$

AY-theoretical prediction: $M(ppK^{-}) = 2.322 \text{ GeV}$ $\Gamma = 61 \text{ MeV}$

Thermal model predictions

Search for ppK⁻

Λp – invariant mass

Rapidity distribution

Excess observed in Ni+Ni (2003) and Al+Al (2005) with statistical significance of ~ 5. Independently reconstructed with 2 different methods (by different people), Yield located in spectator/fireball interface region (like non-strange clusters) – non thermal! Peak position in variance with FINUDA result. Possible interpretation: ΣN – bound state H(2129) Object seen in K⁻ + d $\rightarrow \Lambda p\pi^-$ (O. Braun et al., NPB 124,45 (1977), width not constrained)

CBM physics book

Cluster	Mass [GeV]	Quark content	Cluster	$\mathrm{Mass} \; [\mathrm{GeV}]$	Quark content
H^0	2.020	4q + 2s	$\{2\Xi^{-}, 2\Xi^{0}\}$	5.268	4q + 8s
$\{\Xi^-,\Xi^0\}$	2.634	2q + 4s	$^{6}_{\Lambda\Lambda}He$	5.982	16q + 2s
^{4}He	3.750	12q	$\alpha_q\{6\Lambda\}$	6.060	12q + 6s
4 A A H	4.206	10q + 2s	${}^{6}_{\Lambda\Xi}He$	6.183	15q + 3s
$\{4\Lambda\}$	4.464	8q + 4s	$\{2n, 2\Lambda, 2\Xi^-\}$	6.742	12q + 6s
$\{2\Lambda, 2\Sigma^{-}\}$	4.610	8q + 4s	$^{7}_{\Xi^{0}AA}He$	7.297	16q + 2s
$^{5}_{\Lambda}He$	4.866	14q + 1s	$\{2\Lambda,2\Xi^0,2\Xi^-\}$	7.500	8q + 10s
$\{2\Lambda, 2\Xi^{-}\}$	4.866	6q + 6s			

 Table 10.1 Properties of light multibaryonic states with strangeness.

Experimental strategy at lower beam energies:

reduce combinatorial background as much as possible

- \Rightarrow tag events for strangeness content (by K⁺, (K⁰))
- ⇒ detect K⁺ as efficiently as possible
- ⇒ compact kaon PID over full solid angle (coverage of large polar angles?)

Strange physics from 2 – 10 AGeV

Status

- Chemical equilibration not fully understood yet,
- K⁰ antiflow at 6 AGeV surprisingly large,
- K^{\pm} , Φ flow largely unknown.

Possible Program

Beam energy and system size scan with N_{σ} =50.000 each.

Potential

Clarify density dependence of K – interaction,

EOS

Establish in-medium effects in strangeness sector as reference for charm physics, Discovery of strange baryonic resonances.

Questions

Whether and how to cover the large polar angles?

