from $E_{beam}/A=2$ GeV to $\sqrt{s_{NN}}=200$ GeV (central collisions)

A.Andronic, P.Braun-Munzinger, J.Stachel, NPA 772 (2006) 167, PLB 673 (2009) 142

- Status of thermal fits
- \bullet Energy dependence of T , μ_b
- Excitation function of particle ratios and yield
- Thermal fits and the QCD phase diagram

- conservation (on average) of the quantum numbers: i) baryon number: $V \sum_i n_i B_i = N_B$ ii) isospin: $V \sum_i n_i I_{3i} = I_3^{tot}$ iii) strangeness: $V \sum_i n_i S_i = 0$ iv) charm: $V \sum_i n_i C_i = 0$.
- interactions: excluded volume correction
- widths of resonances taken into account

• minimize:
$$\chi^2 = \sum_i \frac{(R_i^{exp} - R_i^{therm})^2}{\sigma_i^2}$$

- \triangleright R_i : hadron yield (\Rightarrow T, μ_b , V) or yield ratio (no V)
- \triangleright Data: 4π or dN/dy data (our choice, unless stated 4π)
- ? extra parameters: γ_S , λ 's (physical meaning?) (NOT, in our case)
- Latest PDG hadron mass spectrum (up to 3 GeV)

RHIC (200 GeV) and SPS (17.3 GeV)

only STAR data: T=162 MeV, $\mu_b=32$ MeV, V=2400 fm³, $\chi^2/N_{df}=9.0/11$ only NA49 data: T=148 MeV, $\mu_b=215$ MeV, V=1660 fm³, $\chi^2/N_{df}=36/10$

AGS, 2-8 AGeV: small set of hadron yields measured

is chemical freeze-out at the phase boundary for SIS100 too?

- AGS energies: $T_{chem} < T_{kin}$!
- bias in the thermal fits?

Energy dependence of the thermal parameters

- Becattini et al.: $+\gamma_S$ hep-ph/0511092,0806.4100
- Rafelski et al.: $+\gamma_{S,q}$, λ_{q,S,I_3} nucl-th/0504028 γ_S =0.18,0.36,1.72,1.64,... γ_q =0.33,0.48,1.74,1.49,1.39,1.47...
- Dumitru et al.: inhomogeneous freeze-out $(\delta T, \delta \mu_B)$ nucl-th/0511084

Energy dependence of T, μ_b (parametrizations)

 $T = T_{lim} \frac{1}{1 + \exp(2.60 - \ln(\sqrt{s_{NN}(\text{GeV})})/0.45)}, \qquad \mu_b[\text{MeV}] = \frac{1303}{1 + 0.286\sqrt{s_{NN}(\text{GeV})}}$

use param. to check energy dep. of the thermal character of hadron abundance

Particle ratios: the horn

AA, PBM, K.Redlich, NPA 765 (2006) 211

A. Andronic – GSI Darmstadt

- thermal fits work remarkably well (AGS-RHIC) \Rightarrow (T, μ_b, V)
- limiting temperature \Rightarrow phase boundary (LQCD)
 - \rightarrow for the skeptics... *LHC case will be decisive* ("bigger,...")
- indications (bad fits) for the critical point? ...maybe, at SPS...
 - ...but not a strong case due to disagreements between experiments

indications for strangeness non-equilibrium (γ_S) in central collisions? NOT (others: not at SIS and RHIC, *some* at AGS-SPS, *some* at RHIC)

SIS100 "mission":

measure the freeze-out line (or phase boundary?) at high μ_b

 $\mathsf{CBM}=\texttt{``Chemically-frozen''} \ \mathsf{baryonic} \ \mathsf{matter}$

(or Collisionally Broadened Matter ?:)

SPS, 158 AGeV

A. Andronic – GSI Darmstadt

A. Andronic – GSI Darmstadt

More particle ratios

A. Andronic – GSI Darmstadt

