

An Integrated Hydro+Boltzmann Approach to Heavy Ion Reactions at FAIR

Marcus Bleicher Institut für Theoretische Physik Goethe Universität Frankfurt Germany

Thanks to

- Hannah Petersen
- Jan Steinheimer
- Elvira Santini
- Bjoern Baeuchle
- Gunnar Graef
- Gerhard Burau
- Sascha Vogel
- Qingfeng Li
- Dirk Rischke
- Horst Stoecker

Outline

- Model Description
 - Initial Conditions
 - Equations of State
 - Freeze-out Scenarios
- Multiplicities and Spectra
- HBT Results
- Elliptic Flow Excitation Function
- Differential Flow Results
- Conclusions

(Petersen et al., PRC 78:044901, 2008, arXiv: 0806.1695) (Petersen et al., arXiv: 0901.3821, PRC in print)

The QCD Phase Diagram

In heavy ion collisions heated and compressed nuclear matter is produced under controlled conditions

Hybrid Approaches (history)

- Hadronic freezeout following a first order hadronization phase transition in ultrarelativistic heavy ion collisions.
 S.A. Bass, A. Dumitru, M. Bleicher, L. Bravina, E. Zabrodin, H. Stoecker, W. Greiner, Phys.Rev.C60:021902,1999
- Dynamics of hot bulk QCD matter: From the quark gluon plasma to hadronic freezeout.
 - S.A. Bass, A. Dumitru, Phys.Rev.C61:064909,2000
- Flow at the SPS and RHIC as a quark gluon plasma signature.
 D. Teaney, J. Lauret, Edward V. Shuryak, Phys.Rev.Lett.86:4783-4786,2001
- A Hydrodynamic description of heavy ion collisions at the SPS and RHIC.
 D. Teaney, J. Lauret, E.V. Shuryak, e-Print: nucl-th/0110037
- Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions.
 T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys.Lett.B636:299-304,2006
- 3-D hydro + cascade model at RHIC.
 C. Nonaka, S.A. Bass, Nucl.Phys.A774:873-876,2006
- Results On Transverse Mass Spectra Obtained With Nexspherio F. Grassi, T. Kodama, Y. Hama, J.Phys.G31:S1041-S1044,2005

Present Approaches

(3+1)dim. hydrodynamics with nonequilibrium initial conditions (Nexus) and isothermal freeze-out or continuous emission scenario:

• Results On Transverse Mass Spectra Obtained With Nexspherio F. Grassi, T. Kodama, Y. Hama, J.Phys.G31:S1041-S1044,2005

with Glauber or CGC initial conditions and hadronic afterburner:

- Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions.
 T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys.Lett.B636:299-304,2006
- 3-D hydro + cascade model at RHIC.
 C. Nonaka, S.A. Bass, Nucl.Phys.A774:873-876,2006
- See also recent work of K. Werner

Hybrid Approach

- Essential to draw conclusions from final state particle distributions about initially created medium
- The idea here: Fix the initial state and freeze-out
 - Jearn something about the EoS and the effect of viscous dynamics

(Petersen et al., PRC 78:044901, 2008, arXiv: 0806.1695)

The UrQMD transport approach

UrQMD = Ultra-relativistic Quantum Molecular Dynamics

- Initialisation:
 - Nucleons are set according to a Woods-Saxon distribution with randomly chosen momenta p_i < p_F
- Propagation and Interaction:

Rel. Boltzmann equation $(p^{\mu}\partial_{\mu})f = I_{coll}$

Collision criterium

$$d_{\min} \leq d_0 = \sqrt{\frac{\sigma_{tot}}{\pi}}$$

• Final state:

all particles with their final positions and momenta

Very successful in describing different observables in a broad energy range But: modeling of the phase transition and hadronization not yet possible

Initial State

 Contracted nuclei have passed through each other

> 2R $t_{start} =$

- Energy is deposited
- Baryon currents have separated
- Energy-, momentum- and baryon number densities are mapped onto the hydro grid
- Event-by-event fluctuations are taken into account
- Spectators are propagated separately in the cascade

(J.Steinheimer et al., PRC 77,034901,2008)

Equations of State

Ideal relativistic one fluid dynamics:

 $\partial_{\mu} T^{\mu\nu} = 0$ and $\partial_{\mu} (nu^{\mu}) = 0$

- HG: Hadron gas including the same degrees of freedom as in UrQMD (all hadrons with masses up to 2.2 GeV)
- CH: Chiral EoS from SU(3) hadronic Lagrangian with first order transition and critical endpoint
- BM: Bag Model EoS with a strong first order phase transition between QGP and hadronic phase

D. Rischke et al., NPA 595, 346, 1995,

D. Zschiesche et al., PLB 547, 7, 2002

```
Papazoglou et al.,
PRC 59, 411, 1999
```

Freeze-out

- Transition from hydro to transport when ε < 730 MeV/fm³ (≈ 5 * ε₀) in all cells of one transverse slice (Gradual freeze-out, GF)
 → iso-eigentime criterion
- 2) Transition when $\varepsilon < 5^* \varepsilon_0$ in all cells (Isochronuous freeze-out, IF)

• Particle distributions are generated according to the Cooper-Frye formula $E\frac{dN}{d^3p} = \int_{\sigma} f(x,p)p^{\mu}d\sigma_{\mu}$

with boosted Fermi or Bose distributions f(x,p) including μ_B and μ_S

 Rescatterings and final decays calculated via hadronic cascade (UrQMD)

Final State Interactions (after Hydro)

Baryon density distribution

Time evolution of the baryon density is smooth

Time Evolution

Central Pb+Pb collisions at 40A GeV:

•Number of particles decreases in the beginning due to resonance creation

•Qualitative behaviour very similar in both calculations

→ UrQMD equilibrates to a rather large degree

Dependence on t_{start}

Variation of starting time by a factor 4 changes results only by 10 %

Full symbols: 40 AGeV

Open symbols: 11 AGeV

Dependence on Freeze-out

• Variation of the freeze-out criterium does not affect the meson multiplicities and mean transerve masses

Full symbols: 40 AGeV

Open symbols: 11 AGeV

Time scales

Multiplicities vs. Energy

- Both models are purely hadronic without phase transition, but different underlying dynamics
- → Results for particle multiplicities from AGS to SPS are surprisingly similar
- Strangeness is enhanced in the hybrid approach due to local equilibration

Central (b<3.4 fm) Pb+Pb/Au+Au collisions

Rapidity Spectra

full lines: hybrid model dotted lines: UrQMD-2.3 symbols: experimental data

→ Rapidity spectra for pions and kaons have a very similar shape in both calculations

Strangeness Centrality Dependence

Pb+Pb collisions for different centralities

- Thermal production of the particles at transition from hydro to transport
- Centrality dependence of multistrange hyperons is improved

— hybrid model (GF) ----- UrQMD-2.3

(Petersen et al., arXiv: 0903.0396)

Limitations in small systems

- Small systems lack sufficient thermalisation
- Lambda's etc are still driven by initial state

2008) 78:044901, PRC et al. (Petersen

<m_T> Excitation Function

- Resonance excitations and non-equilibrium effects in intermediate energy regime lead to a softening of the EoS in pure UrQMD calculation
- Hybrid calculation with hadronic EoS just rises as a function of beam energy
- Even strong first order phase transition leads only to a small effect

Central (b<3.4 fm) Au+Au/Pb+Pb collisions, Gradual freeze-out for hybrid calculation

HBT radii (freeze-out effects)

Freeze-out effects are small, if hadronic rescattering is included

HBT radii (EoS effects)

Hydro evolution leads to larger radii, esp. with phase transition

R_o/R_s Ratio

(Q. Li et al., PLB 674, 111, 2009)

- Hydro phase leads to smaller ratios
- Hydro to transport transition does not matter, if final
 rescattering is taken into account
- EoS dependence is visible, but not as strong as previuosly predicted (factor of 5)

Initial State for Non-Central Collisions

Pb+Pb at E_{lab} =40 AGeV with b= 7fm at t_{start} =2.83 fm

Event-by-event fluctuations are taken into account (H.P. et.al., arXiv:0901.3821, PRC in print)

v2 - Transverse Momentum Dependence

Hydro phase leads to higher flow values, but weak EoS dependence

Elliptic Flow

- Smaller mean free
 path in the hot and
 dense phase leads to
 higher elliptic flow
- At lower energies: hybrid approach reproduces the pure UrQMD result
- Gradual freeze-out leads to a better description of the data

(Petersen et.al., arXiv:0901.3821, PRC in print)

Data from E895, E877, NA49, Ceres, Phenix, Phobos, Star

v_2/ϵ Scaling

- More realistic initial conditions and freezeout
- Qualitative behaviour nicely reproduced
- Uncertainty due to eccentricity calculation
- Uniqueness of the hydro limit is questioned

(Petersen et.al., arXiv:0901.3821, PRC in print)

Data and hydro limits from NA49 compilation, PRC 68, 034903, 2003

Conclusions

- Hybrid approach combines the advantages of a transport and a hydrodynamic prescription
- Integrated approach with the same initial conditions and freeze-out for different EoS
- Well suited for the FAIR-HADES, FAIR-CBM energy range
- Particle multiplicities and spectra are reasonably reproduced, strangeness enhanced
- Transverse momentum spectra indicate importance of non-equilibrium effects
- **Phase transition** is visible in HBT radii, but long fireball lifetime so far not supported by the existing data
- Flow results depend crucially on initial conditions and freeze-out