Di-electron measurements with HADES at SIS100 HADES

Motivation

- ✓ HADES di-electron results (SIS 18) summary
- ✓ HADES upcoming programme (SIS 18) summary
- ✓ Di-electron data understanding and interpretation remarks
 - Systematic errors (eff. corrections, CB subtraction, pi0 normalization)
 - Knowledge of long-lived sources
- Preliminary simulation results for di-electrons with HADES at SIS100
 - Acceptance for ω direct decay
 - Invariant mass distributions

Jerzy Pietraszko, GSI Darmstadt

Workshop on Nuclear Matter Physics at SIS100, GSI Darmstadt

Di-electron measurements - motivation

How do we study the properties of nuclear matter at high densities and temperatures ?

✓ SIS 18 (1-2 AGeV) T < 80 MeV; ρ = 2.0 ρ_0 ; τ ~10fm/c ✓ SIS 100 (2-10 AGeV) T < 110 MeV; ρ = 4.0 ρ_0

Aim:

 Model independent, systematic investigation of radiation from compressed nuclear matter

✓ In medium spectral functions of the light VM (ϕ, ω, ρ) → chiral symmetry restoration

How:

Measure dilepton radiation from the collision and subtract contribution emitted at chemical freeze-out.

→ radiation from the early stage of the collision

Precise knowledge of the yield at chemical freeze-out is essential. SIS 18 (up to 2 AGeV) – TAPS π^0 , η SIS 100 (2 – 40 AGeV) – only models

Di-electron results: C+C @ 1AGeV, C+C @ 2AGeV HADES

Normalization: $N_{\pi 0} = \frac{1}{2} (N_{\pi +} + N_{\pi -}); \pi^{\pm}$ from the same data sample [arXiv:0902.4377v1[nucl-ex]]

Systematic errors: ~25%, $\sigma_M(\omega) = 9\%$

"hadronic cocktail": thermal source; only long-lived components included, i.e. π^0 , η : TAPS data, ω : m₁ scaling. [I. Froehlich et al.,arXiv:0708.2382]

What about Δ -Dalitz and pn-Bremsstrahlung? Not included in the "hadronic coctail"!

 \rightarrow measured in p+p, n+p experiments !!!

Di-electron results: p+p, n+p compared to C+C

p+p 1.25 GeV, n+p 1.25 GeV

π⁰ contributions measured by HADES
 normalized to the elastic scattering

p+p, n+p, C+C di-electron signals comparison

- ✓ e+e- yield in HADES acceptance
- η contribution subtracted
- → no dependence on beam energy for invariant masses below 0.5 GeV/c²
- → "reference data" for heavier systems

HADES

Di-electron results: Ar+KCl at 1.76 AGeV

Ar+KCI 1.76 AGeV

cocktail A (long-lived components at thermal freezeout, T = 75 MeV)

- $\checkmark ~\pi^0$ and η :
 - ✓ mult. constrained by TAPS
 - R. Averbeck et al., Z. Phys. A 359 (1997), p. 6573.
 - R. Averbeck et al., Phys. Rev. C 67 (2003), 024903.
 - ✓ anisotropic polar angle distribution
- \checkmark ω : mult. from mT scaling
 - isotropic decay pattern

→ Missing part comes from short-lived sources from the early stage of the collision.

Ar+KCI 1.76 AGeV compared to the HADES "Reference data"

 Excess above the "Reference data" by a factor of about 3

→ radiation from compressed nuclear matter

[1] H.Calen et al., Phys.Rev. C 58 (1998), 2667-2670.

Di-electron results: Vector mesons at SIS 18

18 SIS at vector mesons results di-electron HADES

 \rightarrow First observation of ω production in heavy-ion collisions at SIS energies

- $\rightarrow \omega$ production
- \rightarrow modification of the ω meson in nuclear matter

Work in progress !!!

Di-electron plans at SIS18, π⁻- beam

π^- + A – inclusive ω measurement

HADES

Exclusive measurement

large cross-section

✓ off-shell ρ/ω coupling to $S_{11}(1535)$ and $D_{13}(1550)$ M.Soyeur et al., nucl-th/0003013 π ⁻p → $(\omega/\rho)n$ → e^+e^-n coloction of a and (a)

– selection of ρ and ω
 – η-> e⁺ e⁻, π⁰π⁰, ...

suppression by missing mass technique.

Beam particle tracking is essential in preparation

Acceptance for di-electrons (2 AGeV)

- \checkmark Direct ω decay generated by PLUTO
- *ω* from thermal model with inverse slope parameter of 89 MeV (2 AGeV)
- ✓ single leptons filtered with HADES acceptance
- \checkmark 9° opening angle cut was applied

→ overall acceptance for di-electron pairs: 33-35 % → the mid-rapidity region covered

Di-electron cocktail

- \checkmark All sources included in the PLUTO
- ✓ Filtered with HADES acceptance
- ✓ Momentum smearing applied

A full HGeant simulation in preparation.

Di-electrons at SIS100 (2-10 AGeV), motivation

✓ No di-electron data exist in this energy range
 ✓ Extension of the HADES physics programme
 ✓ Enhance production of Vector Mesons:

SIS18 → SIS 100 subthreshold production → above threshold →better signal, precise line shape determination →reference data for SIS 300

HADES at SIS100:

- running experiment, well understood performance
- currently conducted upgrade will improve stability, DAQ and time resolution of the Spectrometer
- easy transfer to FAIR, experienced crew
- can deliver high quality data

But: for pair excess determination a precise knowledge of the hadronic cocktail is needed

(particle yields at chemical freeze-out)

- ✓ At 2-40 AGeV mainly dominated by η-Dalitz
- ✓ Normalization to π^0 (at SIS18 TAPS data)

\rightarrow Calorimeter for HADES

- $\rightarrow \pi^{0}$, η measurement
- \rightarrow improved pion suppression

HADES

Di-electrons at SIS 100 - $\omega \rightarrow e^+e^-$ acceptance

SIS100

at

measurements

di-electron

HADES

Di-electrons at SIS 100 – invariant mass

Di-electron invariant mass for various systems:

- (C+C 2 AGeV and 8 AGeV, Au+Au 1 AGeV and 8 AGeV)
- ✓ All dilepton sources generated by PLUTO, hadronic and electromagnetic decays
- ✓ Single leptons filtered with HADES acceptance
- ✓ Lepton momentums smeared
- \checkmark 9° opening angle cut was applied

Realistic simulation will be performed !

HADES di-electron measurement at SIS 100 summary

- Di-electron radiation from the collision zone at SIS 18 is being investigated in a very systematic, model independent way.
 - ✓ No medium effects observed for light systems (C+C)
 - The "reference spectrum" based on elementary reactions established for heavier systems (Ar+KCI)
 - ✓ First VM signal measured at SIS 18 in Ar+KCI collisions
 - ✓ Modification of the ω meson properties in-medium (p+Nb) under investigation
- Interesting physics programme for future proposals of HADES at SIS 18 (Au+Au, π⁻ beam)

SIS100 – a natural way of the physics programme extension

- ✓ Device ready to take high quality data
- ✓ Easy installation at SIS 100
- VM produced above the production thresholds
- ✓ High acceptance for direct decays of VM over whole energy regions of SIS 18 and SIS100

(from 33 % at SIS 18 to 22 % at SIS100)

Realistic simulation for heavier systems in preparation.

Thank you

The HADES upgrade project, ready in 2010

Ready for SIS18 heavy systems and for SIS 100

- Cope with multiplicities of Au+Au 1.5 AGeV
- Accept up to 20 KHz trigger rate
- Measures:
 - Replace TOFINO with high-granularity RPC
 - Add forward hodoscopes
 - Upgrade DAQ (new Trigger and Read-out Board)
 - Extend RICH radiator
 - Replace plane I of tracking chambers
- RPC full size prototype successfully commissioned in November 2007.
- Expected resolution below 80 ps.

HADES at SIS100 di-electrons from 2-8 AGeV A+A

HADES at FAIR

Dielectron sources form in medium radiation:

- ✓ SIS18 (1-2 AGeV): decays of the short-lived baryonic baryonic resonances, ∆, N* and p-n breamsstrahlung.
- ✓ SPS or RHIC: pion anihilation via the rho resonance above π o- Dalitz region
- Dilepton spectroscopy at energies 2-40 AGeV, "terra incognita", HADES will cover 2-8 AGeV.

HADES at FAIR:

- ✓ Running experiment, well-understood performance
- ✓ Easy transfer to FAIR, experienced crew

CBM

8 - 45 AGe

- $\checkmark\,$ High acceptance for leptons and hadrons at 8GeV
- ✓ Particle occupancies and background comparable to SIS18 (Au+Au at 1.5 AGe)/ \checkmark Ni+Ni at 8 AGe)/)
 - SIS18 (Au+Au at 1.5 AGeV ←→ Ni+Ni at 8 AGeV)
- Huge increase in the yield from direct ω, φ decays by factors of 19, 73 respectively compared to SIS18