Equilibration of Matter Near OCD **Critical Point**

Eugene Zabrodin,

University of Oslo

Content

Motivation. Why 40 AGeV?

Conditions of thermal and chemical equilibrium Statistical model of an ideal hadron gas Relaxation to equilibrium in central cell EOS of hot and dense matter in the cell Summary and perspectives

Equation of State

H. Stoecker, nucl-th/0506013 L. Bravina et al., PRC 60 (1999) 024904; 63 (2001) 064902

Experimental Indications

M. Gazdzicki, nucl-th/0512034

J. Cleymans et al., hep-ph/0510283

Central cell: Relaxation to equilibrium

Equilibration in the Central Cell

 $t^{cross} = 2R/(\gamma_{cm} \beta_{cm})$

 $t^{eq} \geq t^{cross} + \Delta z / (2\beta_{cm})$

Kinetic equilibrium: Isotropy of velocity distributions **Isotropy of pressure**

Thermal equilibrium:

Energy spectra of particles are described by Boltzmann distribution

$$\frac{dN_i}{4\pi pEdE} = \frac{Vg_i}{(2\pi\hbar)^3} \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Chemical equiibrium:

Particle yields are reproduced by SM with the same values of $(T, \ \mu_B, \ \mu_S)$:

$$N_i = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 dp \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Statistical model of ideal hadron gas

Pre-equilibrium Stage

The local equilibrium in the central zone is quite possible

Kinetic Equilibrium

Velocity distributions and pressure become isotropic at t=9 fm/c (for 40 AGeV)

Thermal and Chemical Equilibrium

Energy spectra

Evolution of yields

Thermal and chemical equilibrium seems to be reached

Total yields of hadrons in the cell

Hadron species in the cell at 40 AGeV/c at t=10 fm/c

The system is very close to chemical equilibrium

Negative net strangeness density

Net strangeness density in the central cell at 11 to 80 AGeV

Net strangeness in the cell is negative because of different interaction cross sections for Kaons and antiKaons with Baryons

Equation of State T vs. energy, etc

Isentropic expansion

 $\mathbf{s}/\rho_{\mathbf{B}} = \mathbf{const} = \mathbf{12}(\mathbf{AGS}), \ \mathbf{20(40)}, \ \mathbf{38(SPS)}$

EOS in the cell

temperature vs. energy

energy vs. baryon density

Beginning of temperature "saturation"

Dense and hot equilibrated matter is formed

EOS in the cell

EOS in the cell

temperature vs. baryo-chemical potential

The "knee" is similar to that in 2-flavor lattice QCD

Conclusions

Summary and perspectives

 There is a kinetic equilibrium stage of hadronstring matter in the central cell at t > 8 fm/c The ratio P/e is approximately constant and equals 0.12 (AGS), 0.14 (40 AGeV), and 0.15. (SPS & RHIC) => onset of saturation Entropy per baryon ratio remains constant during the time interval 8 fm/c < t < 20 fm/c. This supports application of hydrodynamics Temperature vs. chemical potential: the kneestructure which appears at the onset of equilibrium should be studied further

Anisotropic flow

Elliptic flow of pions and protons at 40 AGeV

C. Alt et al. (NA49), PRC 68 (2003) 034903

Elliptic flow of pions and protons at 40 AGeV

However, the dip at midrapidity disappears if one uses the {2} or {4} cumulant method

C. Alt et al. (NA49), PRC 68 (2003) 034903

Elliptic flow of pions and protons at 40 AGeV

H. Stöcker et al., nucl-th/0412022

Collapse of proton elliptic flow: evidence for a first order phase transition or for non-flow two-particle correlations?