Strangeness production at AGS and SPS

Claudia Höhne, GSI Darmstadt

Outline – December 2005

"Strangeness is a vast subject."

F.Antinori, proceedings QM04

motivation

- (SIS), <mark>AGS, SPS,</mark> (RHIC)
- particle yields, spectra, flow, fluctuations, (high-p_t, correlations)
- strangeness production at top SPS energy (158 AGeV)
 - system-size dependence
- energy dependence of strangeness production
- summary

largest amount of data

- summary december
- new data (see SQM06): yields (+ rapidity and p_t-distributions) elliptic flow fluctuations
- yields
 - \rightarrow hadron gas model fits: s-undersaturation at 158 AGeV (no γ_s)?
 - \rightarrow ... s-oversaturation at lower SPS energies (γ_s)?
 - \rightarrow inhomogeneous freeze-out?
 - \rightarrow equilibration?
- energy dependence of size-dependence of relative s-production
- elliptic flow
- particle ratio fluctuations (K,π)

Summary – December 2005

- (selected) overview on strangeness production from AGS, SPS experiments
- "most" of the particles are strange: understanding strangeness production → learn about "bulk" hadron production
- particle yields/ ratios well described by (~) chemically equilibrated hadron gas for smaller systems take smaller hadronization volume into account (properly !)
 → strangeness enhancement due to release of canonical s-suppression interesting: change of "shape" of s-increase with centrality for lower energies!
- distinct features observed in energy dependence of (strange) particle production maximum in relative s-production at ~30 AGeV step-like structure in <m_t>-values in SPS energy range
- strong common transverse flow: earlier kinetic decoupling in peripheral Pb+Pb? earlier decoupling of Ω in central Pb+Pb?
 "φ-puzzle" solved: no difference between hadronic and leptonic decay channel elliptic flow of Λ
 K/π fluctuations

Particle yields

New data on Ξ production from NA49

Rapidity spectra of Ξ

approximately gaussian shape

Claudia Höhne The Physics of High Baryon Density, ECT* Trento, May 29 – June 2, 2006

Mass dependence of rapidity width

- ~ linear dependence on particle mass for mesons and antibaryons
- similar slope at all SPS energies
- explainable by hydro-inspired models?

Mean transverse momenta vs. energy

- energy dependence of ${<}m_t{>}$ changes at lower SPS energies
- not described by HSD, UrQMD but by Hydro models with phase transition
- seen for pions, kaons, protons and their antiparticles ...

Mean transverse momenta vs. energy (II)

... and (more or less) seen for other strange particles as well!

• AGS measurements missing for complete picture!

Claudia Höhne

Midrapidity yields vs. energy

Claudia Höhne

K⁰_S at 158 AGeV from CERES

- 2 independent K_{S}^{0} analysis for 7% central Pb+Au collisions from CERES
 - reconstruction without PID and 2nd vertex reconstruction
 - reconstruction without PID but with 2nd vertex reconstruction
- agreement with NA57 for same y-bins but disagreement in fit
- rather good agreement to NA49 (K⁺ + K⁻) data (5% difference only)!

K⁰_s at 158 AGeV from CERES (II)

- good agreement of the 2 CERES analysis
- same temperatur as for NA49 (T = 230 MeV)

Ratios – midrapidity yields

Ratios – 4π yields

Particle ratios at midrapidity (HGM)

Claudia Höhne

Energy dependence of T, µ_B (HGM)

Claudia Höhne

Energy dependence of T, μ_R (HGM) (II)

- Becattini et al.: $+\gamma_S(V)$ hep-ph/0511092
- Rafelski et al.: $T, V, \gamma_{S,q}, \lambda_{q,S,I_3}$ nucl-th/0504028 $\gamma_S = 0.18, 0.36, 1.72, 1.64, \dots$ $\gamma_a = 0.33, 0.48, 1.74, 1.49, 1.39, 1.47...$
- Dumitru et al.: inhom. $(\delta T, \delta \mu_B)$ nucl-th/0511084

Claudia Höhne

Strangeness undersaturation parameter γ_s

Inhomogenous scenario?

- Is there something to learn from these deviations? (equilibrium??)
- interesting ansatz: Dumitru el al, nucl-th/0511084
- allow for an inhomogenous fireball at chemical decoupling (T, δ T, μ_B , $\delta\mu_B$)
- \rightarrow significant improvement in fit quality for 30 158 AGeV beam energy

• relation to 1st order phase transition?

QCD phase diagram

 statistical model only way to put points on the QCD phase diagram

• different approaches agree rather well on (T, μ_B)

[A. Andronic et al, nucl-th/0511071]

Canonical s-suppression

 (very low) energies: well defined case for sundersaturaion

 for central Au+Au grand canonical ensemble applicable for CBM energies

 \rightarrow saturation of relative s-production expected with centrality/ size

[A. Andronic et al, nucl-th/0511071]

Energy dep. of centrality dep. of rel. s-prod.

- earlier saturation for higher energies, saturation also for KAOS?
- shape explainable by release of can. s-suppression alone?

Size-dependence of relative s-production

- non-linear dependence of volume on Npart
 - V=V₀(N_{part}/2) $^{\alpha}$ (α =1, 2/3, 1/3)
 - V from percolation
- include additional s-undersaturation factor $\gamma_{\rm s}$

[H. Caines, SQM06]

Size dependence of rel. s-production (II)

• model including γ_s : (T, μ_B) vary with size \rightarrow smaller systems freeze-out closer to phase boundary?

• ... or (T, μ_B) constant?

Elliptic flow of strange particles

- strangeness (s=1) flows at top-SPS energies!
- v₂ at RHIC (rescaled to same centrality) larger due to higher beam energy

Elliptic flow of strange particles (II)

- mass ordering for $p_t < 1.5$ GeV, opposite above
- meson baryon difference as for RHIC?
 NCQ scaling works only appr. for p_t/nq > 0.5 GeV

K/π fluctuations

- role of resonance decays?
- acceptance effects?
- alternative measurement?

very good agreement between top SPS - low RHIC

 $v_{\text{dyn},\text{K}\pi}$

K*

Claudia Höhne

Role of resonances for K/ π fluc. (UrQMD) ?

K*/K versus energy (pp)

- K*/K ratio rater constant with energy in pp
- A+A: suppression towards central collisions energy dependent?

K*/K versus centrality (STAR)

• energy dependence? ("length" of rescattering phase)

How to measure best?

The use of σ_{dyn} is problematic because it involves event-by-event fluctuations of a ratio

A better measure is $v_{dyn,K\pi}$

$$v_{dyn,K\pi} = \frac{\left\langle N_K \left(N_K - 1 \right) \right\rangle}{\left\langle N_K \right\rangle^2} + \frac{\left\langle N_\pi \left(N_\pi - 1 \right) \right\rangle}{\left\langle N_\pi \right\rangle^2} - 2 \frac{\left\langle N_K N_\pi \right\rangle}{\left\langle N_K \right\rangle \left\langle N_\pi \right\rangle}$$

First proposed by Pruneau, Gavin and Voloshin PRC 66 (2002) Used in STAR Net Charge fluctuation paper – PRC 68 (2003)

- ✤ Insensitive to efficiency
- Properly deals with small multiplicities
- ✤ Centrality studies

We will use $v_{dvn,K\pi}$ for our systematic studies of K/ π fluctuations

[S. Das, SQM06]

Centrality dependence of K/ π fluc.

- continous rise towards the most peripheral Au+Au collisions
- (similar to <p_t> fluctuations from STAR)
- influence of centrality determination or acceptance?

Summary

- new data on Ξ and K_{S}^{0} production at SPS!
 - "step" in mean transverse masses vs. energy also for $\Lambda, \Xi, \Omega, \phi$
 - ... however, AGS data missing!
 - s-undersaturation at higher SPS energies? (no γ_s)
- can we learn something from deviations of the data from hadron gas model fits: anything beyond thermal?
- smaller systems: freeze-out closer to phase boundary?
- strangeness (s=1) flows at top SPS!
- K/ π fluctuations: more understanding needed ...

better data on K* production in A+A at lower energies!

Particle yields at midrapidity

Parametrization of energy-dep.

$$T[\text{MeV}] = T_{lim} \left(1 - \frac{1}{0.7 + (\exp(\sqrt{s_{NN}}(\text{GeV})) - 2.9)/1.5} \right)$$

$$T_{lim} = 161 \pm 4 \text{ MeV} (\chi^2 / N_{df} = 0.3/3)$$

$$\mu_b[\text{MeV}] = \frac{a}{1 + b\sqrt{s_{NN}}(\text{GeV})}$$

 $a = 1303 \pm 120 \text{ MeV}, b = 0.286 \pm 0.049 \text{ GeV}^{-1} (\chi^2 / N_{df} = 0.5/8)$

Baryon → **Meson dominance**

J. C., H. Oeschler, K. Redlich and S. Wheaton, Physics Letters B615 (2005) 50-54. A. Tawfik, J. Phys. G Nucl. Part. Phys. G31 S1105 (2005).