

1

Charm with STAR

Kai Schweda, University of Heidelberg

A. Dainese, X. Dong, J. Faivre, Y. Lu, H.G. Ritter, L. Ruan, A. Shabetai, P. Sorensen, N. Xu, H. Zhang, Y. Zhang.

- 1) RHIC heavy-flavor program / LHC:
 - Study medium properties at RHIC
 - pQCD in hot and dense environment
- 2) RHIC energy scan / GSI program:
 - Search for the possible *phase boundary*.
 - Chiral symmetry restoration

Outline

1) Introduction

2) Charm production in STAR

3) Heavy – quark collectivity

4) Summary

Heavy flavor in pQCD

^s Large Q value needed (>≈3GeV)

powerful test for pQCD calculation

R. Vogt Int. J. Mod. Phys. E 12(2003)211

Heavy-Flavor Quarks

Symmetry is broken:

- \rightarrow QCD dynamical mass
- → EW Higgs mass

Even in a QGP, charm and beauty quark-mass heavy !

□ If heavy quarks flow:
 → frequent interactions
 among all quarks
 → light quarks (u,d,s)
 likely to be thermalized

Plot: B. Mueller

Charm-quark Elliptic Flow

✓ Coalescence approach

V. Greco et al., PLB 595(2004)202.

✓ AMPT transport model B. Zhang et al., PRC 72(2005) 024906.

□ Heavy-quark collective flow observable in D-meson v₂
 □ Large partonic cross sections needed → Frequent interactions
 □ Challenge to theory ?

The key point is to determine

Heavy-Flavor Collectivity D^{0} , D^{\pm} , D^{+}_{s} , Λ^{+}_{c} , J/ψ , ...

The STAR Detector

D recon. from hadronic decay channels: TPC (+TOF)

lectrons:

TPC, TPC+TOF, TPC+EMC

□ Advantage: Direct D-meson reconstruction large acceptance, $|\phi| < 2p$, $|\eta| < 1.5$

Direct Open Charm Reco.

STAR:

Mixed-event technique benefiting from large acceptance of the TPC

$$D^0 \to K^- \pi^+ (3.8\%)$$
 $D^{*\pm} \to D^0 \pi_s (68\%), D^0 \to K \pi (3.8\%)$

STAR: PRL 94, 062301 (2005); PHENIX: PRL 94, 082301 (2005).

Heavy-flavor Energy Loss

Calculations: M. Djordjevic et al., nucl-th/0507019; *J. Alam et al., hep-ph/0604131.

Total Charm X-section


```
1) STAR > pQCD
PHENIX >~ pQCD
```

 2) Charm total cross section is a critical reference for J/ Ψ suppression/enhanc ement determination.

3) Scales (
$$\mu_{F}$$
 and μ_{R})
may be energy
dependent.

STAR, PRL, 94, 062301 (2005) R. Vogt, private communication

Total Charm vs Centrality

Anisotropy Parameter v₂

Initial/final conditions, EoS, degrees of freedom

Non-photonic electron v₂

 $c(b) \rightarrow e + X$

□ Large syst. uncertainties due to large background □ charm collective flow at $p_t < 2GeV/c$ □ $v_2(e)$ favors non-zero $v_2(c)$ at $p_T(e) < 2 GeV/c$.

J/ψ Enhancement at RHIC(LHC)

Calculations: P. Braun Munzinger, K. Redlich, and J. Stachel, nucl-th/0304013.

Statistical hadronization

→ strong centrality dependence of J\ ψ yield at LHC

□ Need total charm yields !

 \rightarrow Measure D⁰, D[±], Λ_c

Probe deconfinement
 and thermalization

${\boldsymbol J}/\psi$ at RHIC

18

Multiply Heavy-flavored Hadrons

D – Meson Pair Correlations

Hadronic Re-scattering

□ Hadronic re-scattering can not completely wash out DD-correlations

□ Frequent partonic re-scattering needed → *light quark thermalization* !

M. Bleicher at al., subm. to Phys. Rev. Lett.

STAR Detector Upgrade

Full Barrel MRPC - TOF

Heavy Flavor Tracker

At μ -RHIC: measure Ω elliptic flow!

Active Pixel Sensors: M. Winter et al., IReS/LEPSI, Strasbourg.

- $D^0 \rightarrow K + \pi$, $c\tau = 123 \mu m$
- Measure decay vertex, $\sigma \leq 50 \mu m$
- enhance S/B by factor 100

→ precise heavy-flavor measurements !

Measure Vector Mesons*

- □ ϕ → e^+e^- : leptons do not re-scatter → probe the medium at early stage
- □ Background: $\gamma \rightarrow e^+e^-$
- HFT discriminates background !
- Need low mass detector

Detectors	ω	φ
TPC+TOF	8 M	2 M
TPC+TOF+SVT+HFT	200K	100K

Summary

□ Charm program at RHIC well established

□ Need precision measurements on spectra, elliptic flow and yields of D^0 , D^{\pm} , D^+_s , Λ^+_c , J/ψ

→ Probe (u,d,s)-quark thermalization

STAR: μVertex + full ToF (2008+)

Spectrum coverage

The reconstructed D measurement has much smaller systematic uncertainties in determining the total cross section.

$d + Au \rightarrow Au + Au$

As expected ----

charm quarks are mostly created from initial NN interactions!