Transport and In-Medium Effects

Christian Fuchs

Institut für Theoretische Physik

Eberhard Karls Universität Tübingen

• What type of medium effects?

- What type of medium effects?
- Quasi-particle picture

- What type of medium effects?
- Quasi-particle picture
- Beyond quasi-particles

- What type of medium effects?
- Quasi-particle picture
- Beyond quasi-particles
- Open questions

Why do we need transport? HADES: first e^+e^- data, C+C, inclusive

Models for heavy ion collisions

Christian Fuchs - Uni Tübingen – p.4/22

Medium effects & transport

• Good quasi-particles: $Re\Sigma >> Im\Sigma$

Potential, mass shifts \implies standard transport (BUU,QMD,...)

Medium effects & transport

• Broad 'quasi'-particles: $Re\Sigma \sim Im\Sigma$

well defined Breit-Wigner ($\Gamma = \Gamma(\rho, k)$) \implies Extended quasi-particle - off-shell transport

Medium effects & transport

• Complex spectral function: $Im\Sigma = Im\Sigma(\rho, k)$

Multi-resonant spectral fucntion \implies no well defined Breit-Wigner \implies treatment not so clear

A typical example K[±] spectral functions

Coupled channel calculations from M. Lutz K^+ : non-resonant; K^- : resonant

D mesons *D* spectral functions

Coupled channel G-Matrix: Tolos et al., PRC 70 (2004) 025203

left: w/o, right with π and N dressing

Good quasi-particles

- Only $Re\Sigma(\rho, k)$ relevant
- Relativistic: scalar and vector part
- In-medium dispersion relation:

$$\omega = \sqrt{\vec{k}^2 + (M + S(\rho, k))^2 + V(\rho, k)}$$

- Independent variables: \vec{x}_i, \vec{k}_i
- On-shell scattering => geometrical interpretation of cross sections
- Broad resonances: sample M according to BW, put particle on-shell

ExamplesNucleons

nonrelativistic mass Dirac mass DBHF (Bonn A) BHF (Bonn A) QHD-I 0,8 NL3 DD-TW ₹ ______0,6 m 0,4 0,2 0 2 3 2 3 0 0 ho / ho_0 ρ / ρ_0

DBHF: Fuchs et al., e.g. PRL 95 (2005) 022302

ExamplesKaons

See e.g. C.F., Prog. Part. Nucl. Phys. 56 (2006) 1

Kaons: transport results (QMD)

See e.g. C.F., Prog. Part. Nucl. Phys. 56 (2006) 1

Comparison of different codes

Workshop on transport models Trento, May 2003:

Kolomeistev et al., JPG 31 (2005) 741; C.F., PPNP 56 (2006) 1

Perturbative off-shell effects

- Full spectral functions ($Im\Sigma(\rho,k)$) in perturbative particle production
- Example: $R \to N + \rho, \omega(\rho, k) \to X + e^+e^-$
- Realization: QMD Tübingen

Dynamical off-shell effects

- First step towards off-shell transport
- Extended test-particle method: Leupold, Cassing/Juchem
- Independent variables: $\vec{x}_i, \ \vec{k}_i, \ \omega_i$
- Additional Eq. for off-shellness:

$$\frac{d}{dt}\Delta\omega_i = \frac{\Delta\omega_i}{\Gamma}\frac{d}{dt}\Gamma$$

- Collisions: On-shell cross sections are evaluated at off-shell energies $\omega_i + \Delta \omega_i$, geometrical interpretation is retained.
- Realization: RBUU Giessen, BUU Rossendorf
- But: knowledge of off-shell transition amplitudes required!

• NN half-off-shell matrix elements

• K^- absorption cross section

Coupled channel G-Matrix: Tolos et al.

Off-shell transport: Cassing et al., NPA 727 (2003) 59

• K^- in off-shell transport

Cassing et al., NPA 727 (2003) 59

Full quantum transport?

- Requires solution of quantum evolution equations (Kadanoff-Baym) in 7-dim. phase space $(\vec{x}, \vec{k}, \omega)$
- test-particles \implies 7-dim. lattice (symmetries \implies 5 dim.)
- cross sections \implies transition amplitudes
- First attempts: Köhler 1995: uniform system & toy model potential (local and Gaussian, i.e. $|V(\vec{k} - \vec{k'})|^2 = |V(\vec{k})|^2 |V(\vec{k'})|^2$)

- Standard transport:
 - Well defined in quasi-particle limit
 - State-of-the art codes agree for standard observables (N, π, K^+)
 - Large deviations for rare & off-shell probes $(K^-, \rho, \omega) \Longrightarrow$ Common baseline required!

- Standard transport:
 - Well defined in quasi-particle limit
 - State-of-the art codes agree for standard observables (N, π, K^+)
 - Large deviations for rare & off-shell probes $(K^-, \rho, \omega) \Longrightarrow$ Common baseline required!
- Off-shell treatments:
 - Perturbative (no limits for spectral functions)
 - Dynamical \implies extended quasi-particle transport
 - Off-shell amplitudes to large extent unknown

- Full Quantum transport?
 - test-particles \implies lattice
 - cross-sections \implies amplitudes

- Full Quantum transport?
 - test-particles \implies lattice
 - cross-sections \implies amplitudes
- Problem: missing manpower & support