

Strangeness in medium

C.Blume, VI-SIM workshop (2006) $\langle \Lambda \rangle / \langle \pi \rangle$ **Motivation** $\langle K^{}\rangle \langle \pi^{}\rangle$ 0.06 kaon effective mass and potential 0.2 0.04 0.1 **Evidence at SIS18** 0.02 (anti)kaon yield $(K)/(\pi)$ $\langle \Xi \rangle / \langle \pi \rangle$ 0.004 (anti)kaon flow -UrQMD 2.0 - HSD 0.15 - Hadron Gas A 0.003 Λ phase space distributions 0.1 0.002 - UrQMD 2.0 **'Review' of AGS results** 0.05 0.001 Hadron Gas A flow of strange particles $\langle \mu \rangle = 0.0008$ $\langle \mu \rangle = 0.0006$ $\langle \phi \rangle / \langle \pi \rangle$ φ φ AGS A AGS 0.008 NA49 NA49 O
 RHIC O RHIC **Exotic effects** 0.006 0.0004 exited hyperon states 0.004 0.0002 deeply bound kaonic states 0.002 10 $\sqrt{\frac{10^2}{s_{NN}}}$ (GeV) 10 $\sqrt{\frac{10^2}{s_{NN}}}$ (GeV)

Role of CBM: hadron program at SIS100 (2 – 10AGeV, √s_{NN}<4.5 GeV) staging scenario, setup, acceptance

Conclusion

spectral function of antikaons in dense matter

Coupled channel calculation M. Lutz, Phys. Lett. B426 (1998) 12

$$\omega_{K^{\pm}}(p,\rho) = \left(m^{*^{2}} + p^{2}\right)^{\frac{1}{2}} = U + \left(m_{K}^{2} + p^{2}\right)^{\frac{1}{2}}$$

effective mass Kaon potential

Production: $P \sim exp(-m^*/T) \rightarrow K$ -yields

Propagation: $F=-\nabla U \rightarrow K$ -flow

Herrmann, Uni-HD

P.Senger et al. (KAOS), F. Laue et al., PRL 82 (1999), updated

Production thresholds: NN \rightarrow NK⁺ Λ E_{lab}= 1

 $\begin{array}{ll} NN \rightarrow NK^{+}\Lambda & E_{lab} = 1.6 \ AGeV \\ NN \rightarrow K^{+}K^{-}NN & E_{lab} = 2.5 \ AGeV \end{array}$

A.Förster et al. (KAOS), PRL 91, 152301(2003)

Centrality dependence

Enhanced Production of K⁺,K[−] observed in HI - collisions multistep processes: ΔN →NK⁺Λ EOS

Transport models: no sensitivity of K^-/K^+ - ratio to in-medium mass of K^- ? Role of $\pi \Lambda \leftrightarrow K^-N$?

Kaon sideflow

Azimuthal distributions with respect to reaction plane

$$\frac{\varphi' \coloneqq \varphi - \Phi_R}{\frac{d^3 N}{p_t dp_t dy d\varphi'}} \propto (1 + 2v_1 \cos(\varphi') + 2v_2 \cos(2\varphi') + ...)$$

Ru+Ru @ 1.7 AGeV

Differential K⁺- sideflow ⇒U_κ(ρ₀)=15-20MeV by model comparison!

N Herrmann Uni-HI

K⁻ phase space distribution different from K⁺

 \Rightarrow U_K-(ρ_0)= - 70 MeV by model comparison (RBUU)

Note: Integrated K⁻ - yield not directly sensitive to K⁻ - potential due to strangeness exchange reaction K⁻N $\leftrightarrow \pi \Lambda$.

rrmann [/ni-H]

Kaon and Antikaon sideflow

 $\mathbf{K}^{\text{-}}$ - sideflow shows unpredicted dependence.

 K^{\pm} , π^{\pm} , p measurement with large phase space coverage and with sufficient statistics needed

errmann Uni-HI

6/24

Kaon and antikaon elliptic flow

Kaon and antikaon have different sign. Antikaon elliptic flow strongly in-plane.

Available statistics in FOPI (2003):

 $N_{ev} \sim 10^8, K^- \sim 5000, K^+ \sim 95000$

errmann Uni-HD

For relevant statistical errors: N(K⁻) > 50000 !

Rapidity distributions @ AGS

Au + Au @ 10.7 AGeV

Different shapes of the rapidity density distributions for the various species

Distributions can be described by longitudinal expansion (superposition of longitudinally flowing fireballs)

K show deviations

Slopes of Kaon Spectra @ AGS

N.Herrmann, Uni-HD

Data: P. Chung et al. (E895), PRL85, 940 (2000)

Very strong Kaon antiflow signal, as big as proton flow!

Theo: S. Pal et al., Phys.Rev.C62:061903, (2000)

10/24

rrmann Uni-HI

Information on charged kaon flow limited to small acceptance. Magnitude of charged kaon flow is much smaller than K⁰ flow (strong p_t-dependence?).

E877 – Data: Au+Au @ 10.7 AGeV

(K.Filimonov et al.)

Model comparison to RQMD 2.3

errmann Uni-HI

Invariant mass distribution of $\Lambda + \pi^{\pm}$

Data: Al+Al @ 1.92AGeV

RHIC DATA: S.Salur, nucl-ex/0410039 THERM. MOD.: .A. Andronic, private communication URQMD MOD.: M. Bleicher, NPA 715 (2003) 85

N.Herrmann, Uni-HI

Multistrange baryon and antibaryon production at threshold unknow or not understood

C.Blume, VI-SIM workshop (2006)

Models predict ratio < 1

Hadron Gas 1: J. Manninen et al. Hadron Gas 2: K. Redlich et al. Hadron Gas 3: J. Rafelski et al.

Evidence for an Excited Hyperon State in pp \rightarrow **pK**⁺**Y**^{0*}

errmann, Uni-HL

T.Yamazaki, HFD2006

K^{bar} Nuclear Clusters $\rho_{av} \sim 3 \rho_0 !!$

Why high-density nuclei possible ? Against the nuclear physics "law" of ρ = const.

Normally: N-N hard-core: quark Pauli blocking + gluon entanglement Exceptional: K⁻ = s u^{bar}: no u,d quark: no Pauli repulsion; strong attraction in u-u^{bar} and d-d^{bar}

Prediction of bound states based on deep optical potential: Y. Akaishi, T.Yamazaki, Phys.Rev.C65, 044005 (2002), Phys.Lett.B535, (2002)

16/24

KEK experiment E471/E549

17/24

N Herrmann Uni-HI

Alternate view of KEK data

Interpretation by E. Oset and H. Toki, *nucl-th/0509048*

Absorption of K⁻ on nucleon pair in ⁴He

 $\begin{array}{l} K^{-}NN \rightarrow \Lambda \ N \ , \ p(proton) = 562 \ MeV/c \\ \rightarrow \Sigma^{0} \ N \ , \ p(proton) = 488 \ MeV/c \end{array}$

The two baryons are emitted back to back if there is no initial momentum.

Evidence for (ppK⁻)_{bound} by **FINUDA** @ DaΦne

Invariant mass spectroscopy $ppK^- \rightarrow \Lambda + p$

M. Agnello et al., PRL 94, 212303 (2005)

FIG. 3. Invariant mass of a Λ and a proton in back-to-back correlation ($\cos\theta^{\text{Lab}} < -0.8$) from light targets before the acceptance correction. The inset shows the result after the acceptance correction for the events which have two protons with well-defined good tracks. Only the bins between 2.22 and 2.33 GeV/ c^2 are used for the fitting.

Production probability: $P \cdot BR = 0.1\%$ per stopped K⁻ **Peak parameter:**

$$M = 2.255 \pm 0.009 \text{ GeV}$$
$$B = 115^{+6+3}_{-5-4} \text{ MeV}$$
$$\Gamma = 67^{+14+2}_{-11-3} \text{ MeV}$$

AY-theoretical prediction: $M(ppK^{-}) = 2.322 \text{ GeV}$ $\Gamma = 61 \text{ MeV}$

→ **0**000 ←

Thermal model predictions

A.Andronic, P.Braun-Munzinger, K.Redlich (2005) arXiv:nucl-th/0506083

Density of species i : (in grandcanonical ensemble)

$$n_{i}(\mu,T) = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2}dp}{e^{\frac{E_{i}-\mu_{B}B_{i}-\mu_{S}S_{i}-\mu_{I_{3}}I_{3i}}{T}} \pm 1}$$

 $\begin{array}{c} \mbox{Free parameter:} & \mbox{chemical potential } \mu_B \\ \mbox{temperature} & T \\ \mbox{Fixed by conservation laws:} & V, \, \mu_S, \, \mu_{I3} \end{array}$

Yield of single strange clusters per Λ peaked at lowest beam energies

Abundance larger than Ξ^- - baryon below $\sqrt{s} \le 4GeV$

20/24

Ad – Correlation Signal

N.Herrmann, Uni-HD

Physics questions can be addressed with reduced CBM - setup, Allows for staging of detector implementation

Minimal setup:

Si-strip stations in Magnet

- + TOF
- + intermediate tracker for matching
- + high speed DAQ

D(TOF) = 4 m (use inner part of final TOF wall, 16% of final detector)

N.Herrmann, Uni-HI

URQMD acceptance simulations:

4AGeV

errmann, Uni-HI

Charged Kaon acceptance with 3σ – TOF separation:

E _{lab} (AGeV)	4	6	8
3	77%	64%	55%

Coverage of low $-p_t$ range of the spectrum !

Status:

Strangeness production at SIS and AGS not fully understood yet.

K⁰ antiflow at 6 AGeV surprisingly large.

Collective flow of strange particles from 2 - 10 AGeV largely unknown, differential flow signals essentially not available.

To be done:

Clarify density dependence of K – interaction in beam energy range from 2 – 8(10) AGeV !

Establish in-medium effects on strangeness as reference for charm production at threshold.

Allow for detection of rare decays of exotic strange resonances.

Option:

Hadron physics program with CBM subsystems at SIS100 ??? What is most important ? Is there support from theory ? Staged implementation of CBM ?