

Trento 2006

Low Mass Electron Pairs Experiments

Joachim Stroth, Univ. Frankfurt

Motivation

- The dilepton signal contains
 contributions from throughout the collision, ...
- i.e. also direct radiation from the early phase.
- It probes the electromagnetic structure of dense/hot nuclear (or partonic) matter.

Motivation (Chiral Symmetry Restoration)

• Substantial depletion of the condensates already in collisions at moderate beam energy.

JOHANN WOLFGANG

UNIVERSITÄT

GOETHE

Overview

Trento 2006 The Physics of Dense Baryonic Matter -

time (advance in technology)

Shower

Tofino

- ϕ symmetry **TOF**
- hadron blind RICH
- 2 % mass resolution (10% without outer tracking)

RICH

MDC II

Magnet

MDC IV

MDC III

C+C 2AGeV: e⁺e⁻ invariant mass spectrum

Trento 2006 The Physics of Dense Baryonic Matter

HADES data

<u>HADES</u>

- Electron pair yield observed in acceptance
- Corrected for reconstruction efficiency
- Cocktail yields from TAPS measurement and using m_t scaling

C+C 2AGeV: Comparison to transport

JOHANN WOLFGAN

UNIVERSITÄ

HADES

C+C 1AGeV: HADES data (preliminary)

UNIVERSITÄ'

JOHANN WOLFGANG

- Electron pair yield observed in acceptance
- Corrected for reconstruction efficiency
- Substantial yield above the η contribution

The DLS spectrometer @ LBL

rento 2006 **Baryonic Matter** Dense Physics of Lhe

Joachim Stroth

DLS and RQMD (Tübingen Group)

Trento 2006 The Physics of Dense Baryonic Matter -

The puzzle remains

Comparison with the DLS results

generated events processed by the full HADES analysis including:

- detector (in)efficiency
- reconstruction (in)efficiency

The CERES Spectrometer @ CERN

- ϕ symmetry
- dE/dX in silicon drift for background rejection
- 3.8 % mass resolution (TPC upgrade)

CERES data

LMLP in PHENIX @ RHIC

the HBD is operational

A. Toja, Hot Quarks 2006

Joachim Stroth

From HADES to CBM @ FAIR

CBM

8 – 45 AGeV

Just five steps ;-)

Dielectron reconstruction in CBM

Background rejection performance

- Au+Au 25 AGeV, central collisions
- Signal mixed into UrQMD events

accepted

The muon option in CBM

Simulations Au+Au 25 AGeV:

- © Excellent signal to background ratio in high mass region.
- $\ensuremath{{\otimes}}$ Low efficiency for small invariant masses and/or low p_t (enhancement region).

Challenging muon detector (high particle densities)

Improve characterization

- Double differential (e.g. inv. mass, p_t)
- Centrality dependence

Reduce uncertainties

- Statistical errors
 - Fast detectors and DAQ
 - Develop a trigger (not always easy, excellent detectors needed)
- Systematical errors
 - Control combinatorial background (good background rejection)
 - Fully understand efficiencies of detectors, track reconstruction, rejection cuts

Open questions

- What precision is really needed to distinguish between scenarios?
- Can one control uncertainties due to missing information about the fireball evolution? Joachim Stroth 20