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3.1 Phase trajectories
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J. Randrup, LBNL
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3.3 Conceptional survey over the dynamical models for high energy nu-
clear collisions

J. Knoll, GSI Darmstadt, Germany

In this section we summarize the principle physical concepts describing the reaction dynamics in the
beam energy range between 2 and 30 AGeV, relevant for the CBM experiment. A detailed discussion
of the various models presently available, the degrees of freedom, ranging from hadrons and hadronic
resonances over phenomenological strings towards quark and gluons and respective dynamical concepts
considered therein for the various reaction stages together with the possible options of the models is
given in section “Description of the Models”.

3.3.1 Hydrodynamic type models

Hydrodynamic models rely on the assumption of instantaneous local equilibration. In multi-fluid ver-
sions this holds within each fluid, which additional source terms describe the transport among the dif-
ferent fluid components. Then the equations of motion are given by the conservation laws of conserved
currents and that of the energy-momentum tensor, which in the relativistic version read:

∂µJµ
a,α = Ca,α

∂µTµν
α = Fν

α

Herea denotes the different conserved charges (el. charge , baryon number, strangeness, ...), whileα
denotes the different fluids. The E-M-tensor of each fluid is determined through the pressurePα and the
energy-densityεα as given by an equation of state (EoS)

Tµν
α = (εα +Pα)uµ

αuν
α−gµνPα,

whereuµ
α is the local four-velocity of the fluidα.
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2 Collision Dynamics

3.3.1.1 One-fluid Hydrodynamics

In this case the source terms on the r.h.s. are zero implying instantaneous local stopping and equilibration.
Thereby the instantaneous stopping leads to the formation of shock fronts. This model permits to incor-
porate the EoS and depending on the EoS to deal with phase-transitions. This way collective phenomena
like flow can be described. It excludes transparency effects and possible super cooling phenomena.

3.3.1.2 Multi-fluid Hydrodynamics

The multi-fluid model permits the exchange of particles and energy among the different fluids, expressed
through the source terms, the particle fluxesCa,α and the friction forcesFµ

α among the fluids on the
r.h.s. of the hydrodynamics equations of motion. Besides the EoS these transport coefficients are to be
determined as the model inputs. These type of models relax the assumption of local equilibrium and
permit to describe various kind of non-equilibrium phenomena such as partial stopping, under cooling or
super heating in phase-transitions or delaying chemical or phase-conversion processes by corresponding
transfer rates. Thus the different fluids can locally attain different flow values, temperatures and chemical
compositions.

3.3.1.3 Three-fluid model

The three-fluid model of [1] assumes one fluid for each incoming nucleus and a third fluid created through
the collisions among the nucleons of the two incident fluids. Different model EoS can by implemented.
The coupling termsCα andFµ

α are presently estimated by binary collisions with the option to scale their
value by a common factor in order to mimic multi-particle collisions relevant at high densities.

First results of the model were presented in [2] employing a simple two-phase model-EoS. See also
DynamicalTrajectories.

3.3.1.4 Non-equilibrium chemistry

The flavor kinetic model of Barz. et al. [3] assumes a two-phase scenario where each phase consists of
a number of constituents, the quarks and gluons in the QGP-phase and of baryons and mesons in the
hadronic phase. A bag-model EoS is assumed for the QGP, while the hadronic phase is described by
free mesons and a Walecka-type EoS for the baryons. The latter is important in order to furnish a proper
phase transition at high baryon densities. Global thermal and pressure equilibrium in an isotropically
expanding radial flow model with a linear (Hubble like) radial velocity profile is assumed. The radial
expansion is generated self-consistently through the pressure, which lead to a predicted flow velocity
of 0.5 c prior to experimental data. The core of the model are chemical rate equations which take the
generic form

< rate>=< f orward rate> (1−exp[(µr −µl )/T]). (3.1)

Figure 3.1: Au on Au at 10 AGeV: density contours; arrows indicate flow velocities.
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Hereµr andµl denote the sum of the chemical potentials of the particles on the right, respectively left
side of a rate balance. E.g forq+ q̄ 
 π+π one hasµl = µq +µq̄ andµr = 2µπ (note only in equilibrium
µq +µq̄ = 0).

These rates describe the density changes of the different constituents, both, due to collisions, and through
phase-conversion rates. Within each phase standard binary collision and decay rates determine the for-
ward rate for each process, while for the phase-transition rates assumptions lent from the string fragmen-
tation are taken to determine the forward rates. The rate equations fully comply with detailed balance,
they are generic since the rate is determined by the off-set in chemical potentials which for each particle
follow from its density and the underlying EoS. If the chemical potentials become disfavored in one
phase relative to the other the system is drive to the other phase.

The model accounts for radial flow, and permits delayed conversion rates between the two phases and
this way super-cooling effects. The generic result of this study is that independent of the detailed as-
sumptions finally the conversion rates become large and after phase-conversion the system finds itself
in near chemical equilibrium. Besides conservation law constraints the final composition is blind with
respect to detailed composition within the plasma phase, e.g. the ratio of strange to non-strange quarks.
Chemical freeze-out emerges automatically through the rate equations.

3.3.1.5 Freeze-out

The hydrodynamic simulations are terminated by a freeze-out procedure, as originally applied to high-
energy physics almost 50 years ago [4]. This is still an open and not fully settled issue which is actively
discussed. Intuitively clear and easily applicable, however, the method suffers from violating the energy
conservation [5]. To remedy the situation, Cooper and Frye [2] proposed their own recipe which was
not free from other problems either, since in part it gave negative contributions to the particle spectrum.
This negative contribution corresponds to out-frozen particles returning to the hydrodynamic phase. Var-
ious further remedies were then discussed in the literature [6] which all suffer from certain deficiencies
depending whether the freeze-out happens from a space-like surface (emission into vacuum) or from a
time-like hyper-surface (global dilution of the system). Thus, the transition from the highly collisional
dynamics to the collision-less one is subtle and most simplified kinetic treatments are hardly justifiable.

3.3.2 Kinetic transport models

Kinetic transport models aim at a microscopic description of the collision dynamics of the constituents of
the system in terms of classical transport concepts. Thereby one distinguishes molecular type approaches
from Boltzmann equation type schemes.

3.3.2.1 Molecular dynamic approaches (QMD, RQMD)

In these approaches one splits the interaction among the constituents into a smooth long-range part which
is explicitly treated by Newtonian forces among the constituents and a short-range components which
is treated by a stochastic collision term. The latter obeys the Pauli principle for fermions or includes
the corresponding Bose-Einstein factors for bosons. For more details concerning the collision term see
next sub-section. In order to deal with smooth phase-space distributions each particle is considered as a
Gaussian wave-packet of given width in coordinate space.
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3.3.3 Boltzmann equation type approaches

These approaches are based on a microscopic transport equation of Boltzmann-Uehling-Uhlenbeck (BUU)
type

(
∂
∂t

+
~p
m

∂
∂~x︸ ︷︷ ︸

free motion

) f (~x,~p, t)−
{
Upot, f

}︸ ︷︷ ︸
mean field

= C( f (~x,~p, t))︸ ︷︷ ︸
Collision Term

(3.2)

with a collision termC and mean potentialUpot.

Here all particles are supposed to be classical on-shell particles. For two-body scattering the the gain and
loss parts of collision term are given by the differential cross-section

C ∝
∫

d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3

dσ
dΩ

((1− f ) f1(1− f2) f3︸ ︷︷ ︸
gain

− f (1− f1) f2(1− f3)︸ ︷︷ ︸
loss

)

Here the collision term is local, i.e. all spatial coordinates in the four involved distribution functions
are the same as on the l.h.s.. Although all simulation techniques pretend to solve the same Boltzmann
equation, the different methods lead to physically different results.

3.3.3.1 Different statistical ensembles

The construction of sufficiently smooth Pauli factors and mean field potentials requires special smoothing
concepts. This can either be provided by averaging over a large numberN of similar events (parallel
ensemble method) or by introducing test particles where a large numberN of test particles represents
one physical particle.

3.3.3.2 Parallel ensemble:

Here the microscopic two-body collisions simulating the collision term happen at finite (two-body) im-
pact parameter. Two prescriptions were used in the literature:

1) the scattering angle in the binary collision is correlated to the impact parameter, e.g. like in classical
scattering theory according the differential cross section (e.g. hard sphere scattering). In this case a)
angular momentum is conserved microscopically, b) it leads to finite delay-time on the average and c)
the collisions thus contribute to the EoS in a non-trivial fashion.

2) the scattering angles are unrelated to the binary impact parameter. Now microscopically angular
momentum conservation is violated and the collision term generally does not contribute to the EoS.

3.3.3.3 Test-particle method

In the limit of a large numberN of test particles this method simulates a local collision term, since the test
particle cross sections scale like 1/

√
N relative to the physical cross sections. Thus this method solves

the Boltzmann Uehling Uhlenbeck equation as given above and the collision term does not contribute to
the EoS. Also here two different implementations of the collision term are in use:

a. binary scattering initiated according to the relative impact parameter and
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b. scattering according to the phase-space occupations of the particles in a local cell.

The recently introduced latter concept opens the perspective for non-trivial collision terms with finite
spectral width where processes 1 <–> 3 and multi-particle collisions can occur (see below).

3.3.3.4 The gradient terms

The gradient term encoded in a Poisson bracket determines the conserved currents and contributes to the
EoS.

In case of momentum dependent potentials this term is insufficient, and further gradient terms have to
appear in the BUU-Eq in order to recover its Galilei (Lorentz) invariance through a corresponding back-
flow term. Thus the treatment of momentum dependent forces is non-trivial.

3.3.4 Resonance transport and dynamical spectral functions

Although the basic concepts for a proper transport treatment of broad resonances were already layed
out in the book of Kadanoff and Baym (1962) [7], considerable conceptual progress was achieved only
very recently. It amounts to perform a systematic first order gradient approximation [8, 9, 10, 11] to the
KB-Equations which provides a generalized transport Eq. (written in covariant notation) determining the
space-time changes of the four-phase-space distribution functionF(X, p) = f (X, p)A(X, p) as

vµ∂µF(X, p)+{ReΣR,F}+{±iΣ−+,ReGR}= Cloc

and an Eq. for the retarded Green’s function in terms of the retarded self-energyΣR(
GR(X, p)

)−1 =
(
GR

0(p)
)−1−ΣR(X, p)

which determines the spectral function through the imaginary part of the retarded Green’s function

A(X, p) =−2Im GR(X, p).

In thermal equilibriumf (X, p) becomes a Fermi-Dirac or Bose-Einstein distribution in the particles en-
ergy p0. The evolution ofF is governed by the generalized transport Eq.. Together with the retarded
equation this defines a generalized quantum transport scheme which is void of the usual quasi-particle as-
sumption. The space-time evolution is completely determined by the initial values of the Green functions
at time zero for each space point. Thus the evolution is “Markovian”. Within its validity range this trans-
port scheme is capable to describe slow space-time evolutions of particles with broad damping width,
such as resonances, within a transport dynamics, now necessarily formulated in the four-dimensional
phase-space.

3.3.4.1 Generalized collision termCloc

Coming from the usual on-shell Boltzmann or Boltzmann-Uehling-Uhlenbeck collision term, each oc-
curring three-momentum distribution function together with its momentum integration is simply to be
replaced by its four-momentum analog, thus

f (X,~p)
d3~p

(2π)3 =⇒ F(X, p)
d4p

(2π)4 = f (X, p)A(X, p)
d4p

(2π)4 .
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Alongside the normally occurring two-body cross-sections have to be replaced by the corresponding
T-matrix expressions providing the proper off-shell extensions. For genuine momentum dependentT-
matrices the collision term has a finite virial due to the interactions at finite distances and therefore the
collision term contributes to the conservation laws in a non-trivial fashion. Within field theory model
applications with local couplings one simply has to evaluate the corresponding self-energies for the
collision term

Cloc = −iΣ−+(X, p)(A(X, p)∓F(X, p))︸ ︷︷ ︸
gain

− F(X, p)(−iΣ+−(X, p))︸ ︷︷ ︸
loss

where−iΣ±∓(X, p) (alias−iΣ><(X, p)) are the self-energy correlation functions determining the gain
and loss rates. In this case the local collision term drops out of the conservation laws.

3.3.4.2 Detailed balance and 2PI-method

Detailed Balance is guaranteed if all self-energies of the different particles are generated from a given set
of closed diagrams by opening the respective propagator lines of the dynamical particles. Thereby the
generating closed diagrams have to have the property that they are two-particle irreducible (2PI) [17,18].
This 2PI-method guarantees [19,20]

a. detailed balance for the collision term

b. conserved currents arising from the gradient terms (see below)

c. to avoid double counting for multi-particle processes (see below)

even after gradient approximation [11] which defines the quantum transport equations discussed above.

As an illustrative example we discuss the scattering of pions (blue dotted line) on nucleons (full black
line) through an intermediate Delta (1232) resonance. Here the scattering amplitude

TπN = (3.3)

is formulated by a phenomenologicalπN∆ vertex. To lowest order the corresponding closed 2PI diagram
defining theΦ-functional and through functional variations the self-energies and thus also the collision
term is given by

Φ = (3.4)

Here all three lines denote full self-consistent propagators. The respective self-energies are obtained by
opening a corresponding propagator line, i.e.

Σ∆ = ; ΣN = ; Ππ = . (3.5)
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The example is non-trivial with respect to the on-shell Boltzmann concept as it replaces the binaryπN-
scattering by an intermediate resonance which itself is treated dynamically within the off-shell transport
equations. Cutting these diagrams vertically visualizes the squares of the corresponding tree-level tran-
sition amplitudes entering the collision terms for the three species.

The concept to deal with dynamical, i.e. non-on-shell spectral functions, further avoids singular or even
mathematically pathological terms as they notoriously appear in higher order perturbative expressions
(cf. subsection 2.2.5).

However it should be stated that the here discussed 2PI-concept to close self-consistent two-point func-
tion schemes on a certain diagram level is not free from conceptual difficulties. While as a positive
achievement Noether currents are conserved on the expectation value level, such currents are no longer
conserved on the higher order correlator level conserved. This comes about due to the partial resumma-
tion implied by solving the dynamical equations of motion, be it on the Schwinger-Dyson or Kadanoff-
Baym level or the here discussed off-shell transport scheme, which leads to a violation of Ward-Takahashi
identities. A famous example is the violation of the Goldstone theorem in the spontaneously broken
phase, where the self-consistent Hartree-Fock approximation leads to propagators for the Goldstone-
bosons which have a non-vanishing mass! Other problems concern the polarization tensor of vector
mesons, which, if coupled to conserved currents, should be four-transversal. However the self-consistent
2PI scheme violates this condition. Cure can be obtained from higher order vertex equations such as
the Bethe-Salpeter ladder resummations. Such extensions are i) numerically such demanding that they
are presently untractable and ii) they spoil the self-consistent concept where one expects all dynamical
quantities to be determined self-consistently. Indeed the symmetry preserving self-energies resultu=ing
from higher order vertex equations do not take part in the self-consistent Dyson scheme. Recently sug-
gested projection methods [21,22] lead to other difficulties in form of kinematical singularities, either at
energy zero or on the light cone. These lead to spurious (infra-red) modes which seriously corrupt the
self-consistent dynamics. Thus, the treatment of vector mesons or even gauge bosons in self-consistent
schemes is still unsettled and requires serious conceptual efforts before one comes to reliable schemes.

3.3.4.3 Gradient terms

More subtle than the collision terms are the first order gradient terms given by the two Poisson brackets.
Indeed both contribute to the conservation laws. Thereby the first Poisson bracket furnishes the so-called
drag-flow. In the quasi-particle limit it accounts for the dressing of the particles by the dragged matter
cloud as to form a quasi-particle with a non-trivial dispersion relation with a corresponding in-medium
group velocity that can be expressed by an effective mass. This change in flow is just compensated by
the second Poisson bracket through the polarization of the medium. The latter thus forms a back-flow
component. Only the coherent play of both Poisson brackets restores the conserved Noether currents and
thus recovers e.g. Galilei (Lorentz) invariance [11]. Thus a system ofN particles is moved with its total
massM = Nmrather than byN times the effective mass!

Since the first Poisson bracket involves space-time and momentum gradients directly acting on the dis-
tribution functionF this term has an easy classical interpretation where the motion of the corresponding
particle is subjected to a force which generally is momentum dependent. A generalization of this concept
to the four-momentum picture is straight forward, since it just amounts to establish the corresponding
characteristic curves of the homogeneous first-order partial differential equation. For the second Poisson
bracket term on the other hand the derivatives of the distribution function appear only implicitly through
the self-energy with the result that they affect momenta other than the momentum externally entering
the transport equation. This has to be such, since the discussed term describes the reaction of the sur-
rounding matter on the particle moving through the matter. However this term escapes an immediate
description in terms of test particles, such that a simulation algorithm could not yet be established for the
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exact quantum kinetic equation (3.3).

Guided by equilibrium relations Botermans and Malfliet [15] suggested a simplification of this second
Poisson term, cf. [8,9,10]

{−iΣ−+,ReGR} =⇒
BM

{ f (X, p)Γ(X, p),ReGR} with Γ(X, p) =−2ImΣR, (3.6)

formally valid up to second order gradient terms. Here the distribution functionf (X, p) directly appears,
while Γ is the damping width. The advantage of this substitution is that now the Poisson-bracket deriva-
tives directly act on the distribution functionf and the term amends a test-particle simulation [10,9]. The
price to be payed is that then the conservation laws are slightly modified, since instead of the spectral
functionA rather the entropy-spectral functionAs= 1

2AΓ2, as introduced in ref. [16], enters the conserved
current expression

Jµ
BM(X) =

∫
d4p

(2π)4evµ f (X, p)As(X, p)(X, p) (3.7)

The BM-substitution accounts for part of the back-flow. In the quasi-particle limit both spectral func-
tions converge to the sameδ-function at the quasi-particle energy [16, 8]. A further merit of the BM-
substitution is that for certain collision terms an entropy current can be derived which fulfills an exact
H-theorem, for details see ref. [8]. Recent first numerical applications with this substitution [9, 10, 12]
were performed.

Once one starts to include the real part of the self-energies in particlura beyond mean-field approxima-
tions one has to face the problem of renormalization in the context of self-consistent schemes. This has
been an unsettled problem for decades. Recent progress in this context was achieved by the work of van
Hees and Knoll [13] and follow-up work by Blaizot et al. [14].

3.3.4.4 Beyond binary collisions

With increasing energy inelastic processes open which lead to the creation of new particles, either through
a kind of bremsstrahlung process, likeNN→ NNγ or NN→ NNπ or other production mechanisms,
like p̄p→ 5π. Such processes were introduced on the basis of measured cross-sections. However the
inclusion of the appropriate backward reaction caused problems and they were commonly neglected.
Recently arguments were given which indeed date back to the time of Planck, when he wrote down
his radiation law. They state that the equilibration rate is determined by the fastest rate. Hence, if the
forward rate is strong also the backward rates should become strong as to furnish the proper equilibrium
within the equilibration time set by the forward rate. Thus processes of the type "3 to 2" or even "5 to 2"
particles can become important and have be included.

There are several suggestions to properly include such “beyond binary” processes. Not all of them lead
to a consistent picture.

Phenomenological quasi-free ansatz for multi-particle processes

One option is to ignore the internal dynamics of the production process itself and to assume that it
happens at space-time scales shorter than relevant for the description of the dynamics. Thus, the multi-
particle interaction vertex is assumed to be essentially point-like and the picture is that of a quasi-free
collision process. Then the multi-particle process rate can be described by Fermi’s golden rule with a
transition-matrixT for the process, e.g. extracted from a measured cross-section for a binary entrance
channel, or given by the point-like transition vertex from the corresponding lowest order self-energy
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diagram. Detailed balance can then be enforced by the 2PI-method described above, just by closing the
self-energy diagram with the external line and then opening any other particle line in order to obtain the
self-energies for the other particles involved in the process.

This method

a. rests on measured cross-section which in part are scarcely available or based on theoretical guesses;

b. obeys detailed balance by construction;

c. is mostly limited to on-shell particles;

d. cannot properly describe the production of soft particles, particles that are soft on the scale of the
collision rate, where the Landau-Pommeranchuk effect suppresses the particle production com-
pared to the quasi-free production prescription.

Intermediate resonances

A second option is to describe the process in a sequential scheme where in a first step an intermediate
resonance is formed which then subsequently decays.

This involves

a. to deal with broad resonances in a dynamical way;

b. to include decay processes ("1 to 2" particle processes) even if they are kinematically forbidden
under on-shell conditions and its inverse process, the fusion ("2 to 1" particle);

c. to fit existing measured cross-sections within this picture.

This strategy obeys detailed balance if all processes are described by self-energies derived from closed
diagrams within the 2PI method.

Off-shell transport

The intermediate resonance picture can directly be generalized to to a general off-shell transport concept.
This has the advantage that through the off-shellness of normally stable particles the bremsstrahlung (and
its inverse) are automatically included (e.g. through aN → Nγ process). This strategy approximately
also accounts for the Landau-Pommeranchuk suppression which in this picture arises from the damping
widths (e.g. collision rate) of the particles.

Higher order processes within the quasi-particle picture

Attempts to construct higher order collision terms within the quasi-particle approximation merely by
adding some perturbative diagrams of higher order for the self-energies run into serious conceptual dif-
ficulties. The problem is very subtle and plagued with singular expressions which notoriously appear in
perturbation theory at higher orders!

To be specific: For the construction of the collision term the imaginary parts of the self-energies are
the key quantities. If a higher order diagrams contains genuine lower order self-energy insertions, one
definitely encounters expressions where the absolute square(!) of the perturbative retarded propagators
(i.e. propagators with zero damping width) appear. If then the corresponding self-energy insertion does
not vanish at the on-shell condition, the expression contains squares of singular distribution functions
(i.e. squares of delta- and principle-value-functions) which are mathematically ill defined and which
through the integration within the collision term thus lead to diverging collision rates! It is well known



that (a) such problems cannot be solved within perturbation theory, but (b) rather require special par-
tial resummations techniques to infinite order, in order to come to regular and physically meaningful
expressions.

Indeed the problem is tightly connected with the irreducibility features required for the kernel of a dy-
namical equation of motion, in this case for the collision term of the transport equation. The transport
equations are self-consistent dynamical equations to the extent that the dynamical quantities calculated
in one time step enter as input for the next time step. Thus, the solution of such equations generates
higher order terms out of its kernel, namely the collision term (and also the driving self-energies in the
Poisson brackets). Therefore the collision term by itself has to obey specific irreducibility criteria: it
has to be void of any process that can implicitly be generated through the solution of the transport equa-
tion! Restricted to the quasi-particle limit these are precisely the processes, namely intermediate on-shell
propagation, that lead to the above stated mathematical difficulties.

Let me add a general note on the irreducibility concept. It is precisely through the formulation of equa-
tions of motion with IRREDUCIBLE kernels that one avoids such singular structures. Therefore this
issue is indeed completely settled for the case of the self-consistent solutions of the Dyson (or Kadanoff-
Baym) equations, when the proper self-energy is entirely a functional of the self-consistent propagator.
There the precise rule is that the kernel of the Dyson equation, i.e. the self-energy, has to be derived from
a 2-particle irreducible (2PI) functional ( [17], [19], i.e. it has to be void of any self-energy insertion. The
step towards transport is achieve by a consistent gradient approximation of the Kadanoff-Baym equations
(cf. [11]). Still then the 2PI-rule applies.

If, however, as frequently addressed, one tries to restrict the dynamical description toon-shell(or better
quasi-)particles, one seriously spoils the 2PI irreducibility concept! Then one carefully has to separate
self-energy terms that are treated explicitly from those generated implicitly through terms of lower order.
This implies the necessity of so-called z-factors for the quasi-particle strength on the one hand and
an implicit treatment of the complementary background terms. As yet there is no formulation in the
literature where such a separation has thoroughly been addressed for the higher order terms such that (a)
the irreducibility properties are appropriately formulated for the quasi-particle picture while (b) at the
same time physically meaningful and non-singular expressions emerge.

3.3.5 String fragmentation

Phenomenological strings are a tool to cope with the situation that with increasing energy partonic de-
grees of freedom (quarks and gluons) are release and form the main dynamical components then. The
transition from the partonic phase to the hadronic one is frequently furnished by phenomenological
string-fragmentation models. They generally rely on models developed in high energy physics such as
the Lund string model [23], in order to describe the particle production inpp or p̄p or e+e− collisions.
Optionally the models include collective string effects such as the color-rope picture [24, 25]. They
normally ignore the associated space-time evolution and solely operate in momentum space. Possible
space-time effects for the reaction are usually mocked up by a phenomenological formation time that
prevents created particles from immediate interactions with other ones. The standard implementation
uses quark–quark or quark–anti-quark collisions to form the strings which then decay through pair cre-
ation into newqq̄-pairs or directly into hadrons or hadron resonances. Void of driving potentials so far
the inverse reactions are not included. Thus the concept violates detailed balance which is an essential
ingredient to avoid over-population of phase space and to drive the systems towards equilibrium in the
event of long overall reaction times. Further details may be given in the model descriptions.
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3.4 Dynamical models in detail

C. Fuchs, Institut für Theoretische Physik, Universität Tübingen, Germany

Ultra-relativistic heavy ion collisions offer the unique opportunity to probe highly excited dense nuclear
matter under controlled laboratory conditions. One of the objectives of this research field at the interface
of high–energy and nuclear physics is the creation and study of super-dense matter. The compelling
driving force for such studies is the expectation that an entirely new form of matter may be created from
such reactions. That form of matter, called the Quark Gluon Plasma (QGP), is the QCD analogue of
the plasma phase of ordinary atomic matter. However, unlike such ordinary plasmas, the deconfined
quanta of a QGP are not directly observable because of the fundamental confining property of the phys-
ical QCD vacuum. What is observable are hadronic and leptonic residues of the transient QGP state.
There is a large variety of such individual probes. Leptonic probes,γ, e+e−, µ+µ− carry information
about the spectrum of electromagnetic current fluctuations in the QGP state; the abundance of quarkonia
Ψ, Ψ′, ϒ, ϒ′ (also observed vial+l−) carry information about the chromoelectric field fluctuations in
the QGP. The arsenal of hadronic probes,π, K, p, p̄, Λ, Ξ, Ω, φ, ρ, . . . provide information on the quark
flavour chemistry and baryon number transport. Theory suggests that with decays such asρ → e+e−

the properties of the hadronization and chiral symmetry breaking can be indirectly studied. Quantum
statistical interference patterns inππ, KK, pp, ΛΛ correlations provide somewhat cloudy lenses with
which the space-time geometry of hadronic ashes of the QGP can be viewed. The detailed rapidity and
transverse momentum spectra of hadrons provide barometric information of pressure gradients during
the explosive expansion of the QGP drop.

The central problem with all the above probes is precisely that they are all indirect messengers. If we
could see free quarks and gluons (as in ordinary plasmas) it would be trivial to verify the QCD prediction
of the QGP state. However, nature chooses to hide those constituents within the confines of colour neutral
composite many body systems – hadrons.

The QGP state formed in nuclear collisions is a transient rearrangement of the correlations among quarks
and gluons contained in the incident baryons into a larger but globally still colour neutral system with
however remarkable theoretical properties. The task with heavy ion reactions is to provide experimental
information on that fundamental prediction of the Standard Model.

3.4.1 Hydrodynamics

Nuclear fluid dynamics (NFD)

Dumitru, Stoecker, ....
Nuclear fluid dynamics (NFD) is a dynamical model in which a phase transition can explicitly be incor-
porated (see e.g. [?, ?, ?, ?, ?, ?, ?] for details). This is possible since the equation of state (including a
phase transition) is a direct input for the calculations. However, NFD is an idealised continuum descrip-
tion based on local equilibrium and energy–momentum conservation. Therefore it is very well suited
to study kinematic observables such as collective flow. Since NFD is a macroscopic kinetic theory it
is not directly applicable to the study of hadron abundances and particle production. However, NFD
calculations predict (local) temperatures and chemical potentials which can be used, e.g. by chemi-
cal equilibrium calculations of hadron abundances, to study particle production. Different observables
predicted by nuclear fluid dynamics will be discussed in section??.

In the ideal fluid approximation (i.e. neglecting off-equilibrium effects), the EoS is theonly input to
the equations of motion that relates directly to properties of the matter under consideration. The EoS
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influences the dynamical evolution of the system, and final results are uniquely determined. The ini-
tial condition can be chosen from two colliding nuclei (in a full 3D calculation with up to three fluids)
or an equilibrated QGP or hadronic matter with prescribed temperature and chemical potential and ve-
locity/flow profiles (for simpler, more schematic calculations). The time-evolution is then studied until
hadronic freeze-out for which a decoupling (freeze–out) hyper-surface needs to be specified.

However, the ideal fluid ansatz is only a rough approximation. In the parton cascade study [?] for
example, large deviations from even the Navier Stokes fluid approach were found.

Relativistic Three Fluid Model

Ivanov, Russkikh, Toneev
http://theory.gsi.de/ mfd/

A direct way to address thermodynamic properties of the matter produced in these reactions consists
in the application of hydrodynamic simulations to nuclear collisions. However, finite nuclear stopping
power, revealing itself at high incident energies, makes the collision dynamics of non-equilibrium char-
acter and prevents us from the application of conventional hydrodynamics especially at the initial stage
of the reaction. Since the resulting non-equilibrium features are quite strong, the introduction of vis-
cosity and thermal conductivity does not help to overcome this difficulty, because by definition they are
suitable for weak non-equilibrium situations. A possible way out is taking advantage of a multi-fluid
approximation to heavy-ion collisions.

Unlike to conventional hydrodynamics, where a local instantaneous stopping of projectile and target mat-
ter is assumed, a specific feature of the dynamic 3-fluid description is a finite stopping power resulting in a
counter-streaming regime of leading baryon-rich matter. Experimental rapidity distributions in nucleus–
nucleus collisions support this counter-streaming behaviour, which can be observed for incident energies
between a few up to 200A GeV. The basic idea of a 3-fluid approximation to heavy-ion collisions [1,2] is
that at each space-time pointx= (t,x) the generally non-equilibrium distribution function of baryon-rich
matter, can be represented as a sum of two distinct contributions,fbar.(x, p) = fp(x, p)+ ft(x, p), initially
associated with constituent nucleons of the projectile (p) and target (t) nuclei. In addition, newly pro-
duced particles, populating the mid-rapidity region, are associated with a fireball (f) fluid described by
the distribution functionf f (x, p). Therefore, the 3-fluid approximation is a minimal way to simulate the
finite stopping power at high incident energies. Note that both, the baryon-rich and fireball fluids may
consist of any type of hadrons and/or partons (quarks and gluons), rather than only nucleons and pions.

To justify the term “fluids” it is assumed that constituents within each distribution are locally equilibrated,
both thermodynamically and chemically. This assumption relies on the fact that intra-fluid collisions
are much more efficient in driving a system to equilibrium than inter-fluid interactions. As applied to
the fireball fluid, this assumption requires some additional comments, related to the concept of a finite
formation time. During the proper formation timeτ after production, the fireball fluid propagates freely,
interacting neither with itself nor with the baryon-rich fluids. After this time interval, the fireball matter
starts to interact with both itself and the baryon-rich fluids and, as a result, thermalizes locally.

The main unknowns of the present approach can be briefly summarised as follows: the equation of state
(EoS) and “cross sections”. The EoS is an external input to the calculation and thus can be varied. Our
goal is to find an EoS which in the best way reproducesthe largest body of available observables. The
“cross sections” are equally important. They determine friction forces between fluids and hence the
nuclear stopping power. In principle, friction forces are EoS dependent, because medium modifications,
providing a nontrivial EoS, also modify cross sections, and should be externally supplied together with
the EoS. However, at present we have at our disposal only a rough estimate of the friction forces cf.
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Ref. [3] based on experimental inclusive proton–proton cross sections. Therefore, we have to fit the
friction forces to the stopping power observed in proton rapidity distributions.

The hydrodynamic treatment of heavy-ion collisions is an alternative to kinetic simulations. The hydro-
dynamic approach has certain advantages and disadvantages. Lacking the microscopic feature of kinetic
simulations, it overcomes their basic assumption, i.e. the assumption of binary collisions, which is quite
unrealistic in dense matter. It directly addresses the nuclear EoS that is of prime interest in heavy-ion
research. Naturally, we have to pay for these pleasant features of hydrodynamics: the treatment assumes
that the non-equilibrium stage of the collision can be described by the 3-fluid approximation. The basic
reason for introduction of the 3-fluid approximation is simulation of the finite stopping power which is
important at the formation stage of the initial hot and dense blob of nuclear matter. In this sense, it is
an alternative to constructing this initial blob by means of either various kind kinetic transport models or
model assumptions. It is worthwhile to mention that we have to proceed to the hydrodynamic treatment,
if we are going to study the quark-gluon phase, since the EoS (with the phase transition) is a direct input
of this approach.

3.4.2 Non-equilibrium models

In order to connect the theoretical thermodynamic properties of a QGP with experimental data on finite
nuclear collisions, many non-equilibrium dynamical effects must also be estimated. Transport theory
is the basic tool to address such problems. Non-equilibrium effects are certain to arise from the rapid
time-dependence of the system (even the use of the term “state” seems questionable), finite size ef-
fects, inhomogeneity,N-body phase space, particle/resonance production and freeze-out and collective
dynamics. Such microscopic and macroscopic (hydrodynamical) models attempt to describe the full
time-evolution from an assumed initial state of the heavy ion reaction (i.e. the two colliding nuclei) up
to the freeze-out of all initial and produced particles after the reaction. Hydrodynamical models neglect
most of these effects by making the assumption that the initial condition can be assumed to be in local
thermal equilibrium and that local equilibrium is maintained during evolution. Fireball models simply
parameterise final spectra and abundances via freeze-out parameters, e.g.T,µB,~vf . However, the initial
condition in nuclear collisions is a coherent state|AB〉 of two quantal (T = 0) nuclear systems. A non-
equilibrium quantum evolution of|AB〉 introduces complex high order Fock-State components. A key
dynamical assumption is that decoherence occurs rapidly during the early phase of the collision yielding
a mixed state density matrix (withS= Trρ lnρ > 0). There is no theorem to insure thatρ evolves to
a local equilibrium form exp(−uµpµ/T) at any time during the reaction. That can only be tested via a
transport theory approximation to the evolution equations. The question of the form of the initial state
ρ(τ0) must still be addressed, but once that is specified, transport theory can reveal if local equilibrium
is achieved and what observables are least sensitive to uncertainties inρ(τ0).

Depending on the most convenient basis for expandingρ(τ0), transport theory assumes different forms.
At low energies the initial ensemble is most conveniently described in terms of mesons and baryons. Here
hadronic transport theory is appropriate. At collider energies, pQCD minijet processes are expected to
produce a high density mostly gluonic gas. In that regime parton cascade models are more appropriate.

3.4.2.1 Parton cascades

Parton cascade models evolve partonic degrees of freedom. They are therefore mostly applied to study
the initial compressional and the high density phase of ultra-relativistic heavy ion collisions (collider
energies,

√
s≥ 200 GeV). These models all contain the general structure [?]:

1. Initialisation: the nucleons of the colliding nuclei are resolved into their parton substructure ac-
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cording to the measured nucleon structure functions and yield the initial parton distributions.

2. Interaction: parton interactions as described by perturbative QCD are used to model the evolution
of the ensemble of partons during the course of the collision. This includes multiple scatterings
together with associated space-like and time-like parton emission processes before and after each
scattering. The sequence of scatterings is, however, incoherent and the neglect of quantum inter-
ference effects is questionable.

3. Hadronization: partons are recombined or converted via string fragmentation into final hadron
states.

The propagation is performed on straight lines – soft non-perturbative collective field effects have so
far been neglected. On the other hand, hadronization has to be modelled by brute force to mock up
confinement in the final reaction stage.

3.4.2.2 Hadronic transport models

Hadronic transport models treat relativistic heavy-ion collisions as sequences of binary/N-body collisions
of mesons, baryons, strings and their constituents, diquarks and quarks. The real part of the interaction
can be obtained in principle from G-Matrix calculations, with the in-medium self-energy and the imagi-
nary part is modelled via hard scattering cross sections. Three main elements form the general structure
of these models

1. Initialisation: either with a Fermi-gas ansatz or within a self-consistent approach of minimising the
respective Hamiltonian. In BUU type models one-body phase space distributions are represented
by so called test-particles which can be of point-like [46, 44] or Gaussian form [45] while in
Quantum Molecular Dynamics [47] each individual particle is represented by a Gaussian wave
packet.

2. Propagation: propagate the constituents (hadrons, i.e. centroids of wave packets or test-particles
representing the hadronic phase space distributions) according to the equations of motion of the
respective model (straight lines in the CASCADE case).

3. Collision term: parameterised or tabulated cross sections and decay widths for all the baryons and
mesons included.

For high beam energies most models include particle production via string formation – either using the
Lund [?,?,?] or a pomeron exchange scheme [?]. Partonic degrees of freedom are not treated explicitly
and therefore these models do not include a phase transition. However, some models contain further
speculative scenarios such as colour-ropes [?,?], breaking of multiple-strings [?] or decay of multi-quark
droplets [?] which clearly go beyond hadronic physics.

Hadronic transport models are critical for assessing the influence of ordinary or exotic hadronic phe-
nomena on the observables proposed to search for a QGP. They therefore provide a background basis to
evaluate whether an observable shows evidence for non-hadron physics.

Degrees of freedom

The energy range where the various models are applicable is essentially determined by the degrees of
freedom which are excited. If the excitations, e.g. of particles carrying strangeness are abundant enough
to influence the overall reaction dynamics they must explicitly be included when a model is applied to
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this energy regime. If, however, the energy of the reaction lies just in the vicinity of the threshold of a
mesonic or baryonic excitation such an excitation is extremely rare and does not influence the overall
reaction dynamics. It can safely be neglected for practical purposes. To be applicable in a certain energy
range, a model must only include therelevantdegrees of freedom.

However, the production of rare probes in the vicinity of the corresponding threshold leads in many
cases to particular physical insight. The reason is simply that rare probes, produced at subthreshold
energies have in many cases no change to reach chemical equilibrium with the surrounding medium.
They carry therefore more information on the conditions of their production stage. A typical example are
subthresholdK+ mesons produced at SIS energies. They originate to most extent from the high density
phase of the reactions and, once produced, interact only weakly with the surrounding medium. Due to
strangeness conservationK+ mesons cannot be absorbed by a medium which carries no strangeness. An
analogous situation is expected for open charm (D, D̄) production at CBM energies. Such subthreshold
particles can generally be treatedperturbativelywhich means to neglect their feedback on the overall
reaction dynamics [65]. This allows to artificially enhance the corresponding production cross sections
in the simulations and to collect the necessary statistics. Otherwise one would produce one subthreshold
event in e.g. one of about 103÷105 heavy ion collisions which would make the investigation of such
processes practically impossible. In this method, the dynamical degrees of freedom, e.g. nucleons,
∆ resonances, and pions, are not affected by the production of rare probes, and the produced particle is
given a probability determined by the ratio of its production cross section to the total two-body scattering
cross section. After being produced, these rare particles also undergo elastic and inelastic scattering as
well as propagate in mean-field potentials.

At centre-of-mass energies of about
√

s≥ 4 GeV corresponding roughly to the AGS regime of about
10 AGeV laboratory energy strings start to be excited. This is also the energy range where elastic and
inelastic collisions start to dominate the reaction dynamics and the nuclear mean field becomes less
important. Do to the lack of a mean field pure cascade models should not be used below 10 AGeV. But
even when applied to the ultra-relativistic regime where the initial phase of a reaction is dominated by
binary collisions, a pure cascade description has to rely on the assumption that the system is already
sufficiently dilute in its expansion phase and final state interactions can be neglected. Moreover, cascade
models will never allow to address subtle effects such as off-shell transport of broad resonances. For
completeness figures 3.2 and 3.3 depict the lowest SU(3) baryon multiplets, i.e. the baryon octet and
decouplet as well as the lowest pseudoscalar (ps) and vector (v) meson nonets. These are the basic
degrees of freedom taken into account in string based models as asymptotic states of the string decays.
When the models are extended to the charm sector the SU(3) multiplets have to be extended to the
corresponding SU(4) multiplets [33].
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Potentials and mean fields

The real part of the optical nucleus-nucleus potential, respectively the mean field dominates the reaction
dynamics at low and intermediate energies. Models in particular designed for low and intermediate rela-
tivistic energies contain generally a more sophisticated treatment of the mean field than models designed
for the ultra-relativistic regime. The nuclear mean field is obtained by the integration of an effective
two-body interaction over the occupied states, i.e. the local phase space distributions. In the medium this
two-body interaction is given by theG-matrix (or in-medium T-matrix). TheG-matrix has to be derived
from microscopic Brueckner-Hartree-Fock (BHF) [36, 39] or relativistic Dirac-Brueckner-Hartree-Fock
calculations [37, 38, 34, 35]. To perform such calculations for arbitrary non-equilibrium phase space
configurations as they occur in heavy ion reaction is presently out of range. One possibility is therefore
to apply the results of BHF/DBHF calculation for infinite nuclear matter in a local density approxima-
tion (LDA) to heavy ion reactions. Attempts to go beyond the LDA and to incorporate non-equilibrium
features on the level of the effective interaction have e.g been made in [41, 40]. However, the density
and momentum dependence of theG-matrix is rather complex and therefore in many transport models
simpler effective interactions such as Skyrme forces [42] or parameterisations of the non-linear Walecka
model of Quantum Hadron Dynamics [43,44] are used.

The mean field depends in general on the local densityρ, the momentum relative to the surrounding
mediump and, when isospin-dependent forces are used, on the local isospin asymmetryβ. One has fur-
ther to distinguish between non-relativistic potentialsU , e.g. Skyrme forces, and a relativistic treatment
where self-energiesΣ of different Lorentz character (scalar and vector) arise, e.g. Walecka type models.
Note that even if self-energies do not explicitly depend on momentum, in the relativistic case a momen-
tum dependence arises due to Lorentz forces generated by the vector component of the self-energy.

XXXX connection to hydro eos XXXXXXXXX

3.4.2.3 Model realizations

In the following a compilation of state-of-the-art transport models is given.

Quantum-Molecular-Dynamics (IQMD):

J. Aichelin, Ch. Hartnack
http://www-subatech.in2p3.fr/ theo/qmd/
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The isospin quantum molecular dynamics model (IQMD) [73] is a semiclassical transport model treating
the interactions of nuclear matter on a microscopic N-body level. Nucleons, deltas and pions interact via
Skyrme-type two and three body forces and via binary collisions. The collisions allow for elastic and
inelastic channels. Its actual application is majorly focused on the actual SIS18 physics.

Quantum-Molecular-Dynamics ((R)QMD):

A. Faessler, C. Fuchs, ...

The Tübingen relativistic quantum molecular dynamics (R)QMD transport code [4] is in principle similar
to the IQMD model. It is relativistic, however, not covariantly formulated. In the Tübingen QMD and
IQMD models only pions are included as explicit mesonic degrees of freedom. Heavier mesons such
asK,η,ρ,ω, . . . are treated perturbatively. These models are in particular suited to study subthreshold
meson production at SIS energies. They have extensively been applied to kaon production at subthreshold
energies [5,6] and in the case of QMD (Tübingen) also to vector meson and dilepton production [7]. For
the latter case the Tübingen model has been extended to include all nuclear resonances with masses
below 2 GeV, in total 11N∗ and 10∆ resonances [7].

BUU (GiBUU):

A. Larionov, U. Mosel, O. Buss, K. Gallmeister, T. Leitner

The Giessen BUU model (GiBUU) [48, 49, 50, 51] explicitly propagates 9N∗ and 9∆ resonances with
mass below 2 GeV. Apart from that, the model propagates theS= −1 baryonsY = Λ, Σ and 19Y∗

resonances. Also the cascades and charmed baryons are included. In the mesonic sector, the following
particles are propagated:π, η, ρ, σ, ω, η′, φ, ηc, J/ψ, K, K̄, K∗, K̄∗. The baryon-baryon (meson-baryon)
collisions below

√
s= 2.6 (2) GeV are treated within the resonance scenario, while at higher invariant

energies the string model is applied. The model includes optionally (at SIS energies) the nucleon and
kaon mean fields. The nucleon potential in the local rest frame (l.r.f.) of nuclear matter has a Skyrme-
like form with a momentum dependent part added separately. The nucleon energy in the l.r.f. is then
represented in the Lorentz invariant way by keeping only the scalar potential. The actual calculation
of the scalar potential is performed selfconsistently, since the nucleon potential in the l.r.f. depends
on its momentum. The mean field potentials of the nonstrange baryonic resonances are put equal to the
nucleon mean field, while the hyperonic potentials are rescaled by a factor of 2/3 according to the fraction
of the nonstrange quarks. The GiBUU model contains a larger set of the baryonic resonances than other
transport models (excepting the Tübingen QMD model) and consequently leads to higher pion numbers
in vacuum. Medium corrections to the cross sectionsNN↔NRandNN↔NNπ reduce the pion number
in medium. The in-medium reduced cross sections are implemented (optionally) in GiBUU. They are
computed with the Dirac masses from the NL2 model [52]. In particular, theNN↔ N∆ matrix element
is given by the one-pion exchange model — same as in the calculations of Dmitriev et al. [53], but with
replacement of the vacuum∆ and nucleon masses by the Dirac ones. This leads to a strong in-medium
reduction of the cross section [50]. The GiBUU model is suitable not only for heavy-ion collisions and
hadron-nucleus reactions, but also for photon-, electron- and neutrino-induced reactions. This gives the
possibility to test the same dynamical part of the model with various physical initial conditions. A new
numerical realization of the model [54] is currently being tested. The results presented here are based on
the old version desribed in [48,49,50,51].
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BUU (BRoBUU)

H.W. Barz, Gy. Wolf, M. Zétényi, B. Kämpfer

The BRoBUU computer code for heavy-ion collisions is developed in a Budapest-Rossendorf coopera-
tion. This code solves the Boltzmann-Ühling-Uhlenbeck equation in the quasi-particle limit [74]

∂F
∂t

+
∂H
∂p

∂F
∂x
− ∂H

∂x
∂F
∂p

= C, H =
√

(m0 +U(p,x))2 +p2

for the one-body distribution function F(x,p,t) of a certain hadron species. This equation is applied to the
motion of the different hadrons, each with massm0 in a momentum and density dependent mean fieldU .

This scalar mean fieldU is chosen in such away that the HamiltonianH equalsH =
√

m2
0 +p2+Unr with

a usually in a non-relativistic manner calculated potentialUnr. Different particles species (each decsribed
by a corresponding distributionF) are coupled by the collision integralC which also contains the Ühling-
Uhlenbeck terms responsible for Pauli blocking and Bose enhancement in the collision and particle
creation and annihilation processes. The coupled set of Boltzman-Ühling-Uhlenbeck equations is solved
by using the parallel-ensemble test-particle method. This method transforms the partial differential–
integro equations into a set of ordinary differential equations (looking like equations of motion) for a
large number of test particles simulating the ensemble averaging process for the respective functionF .

Recently theoretical progress has been made in describing the in-medium properties of particles. In the
medium particles have a finite life time which is described by the widthΓ in the spectral function of the
particles. The spectral function can significantly change during the heavy-ion collision process and can
be simulated by an ensemble of test particles with different masses. The change of the spectral function
is given by time variation of the test particle massm [75,76]. For bosons this additional equation reads

dm2

dt
≈ (

δ
δt

ReΣret +
m2−m2

0−ReΣret

Γ
δ
δt

Γ),

whereReΣ is related to the mean fieldU , and δ/δt stands for the comoving time derivation. This
equation ensures that resonances are propagated towards their vacuum spectral functions at freeze-out.
In particular, this technique, allowing for a consistent propagation of broad resonances, is applied in the
BRoBUU code for calculating the di-electron emission ofω andρ mesons in the 1 GeV region.

The BRoBUU code propagates in the baryon sector 24∆ andN∗ resonances andπ,η,σ,ω andρ mesons
as well. In addition, the strange particlesΛ, Σ andK± are propagated, however their production processes
are treated by a perturbative method so that they do not effect the dynamics of the collision. Baryons
propagate in the mean field. Strange baryons feel 2/3 of the baryon field. Nonstrange mesons are not
effected by a potential, but a potential may be easily added if needed. Various sets of mean fields for
kaons are available [77]. The nonstrange mesons are produced via resonance decays. This means that the
reactionsNN↔ NRandmN↔ R are implemented in the code (withR denoting any baryon resonance
andm denoting any meson). Parameters are best fitted to available data [78]. ForK+ production andφ
meson production cross sections parameters are taken from [79] and [80], respectively. Production and
absorption cross section ofK− mesons are measured to a large extent, but forNY↔ NNK− processes
one has to rely on theoretical predictions [81].

Relativistic BUU (Texas A&M/Stony Brook):

L.-W. Chen, C.-M. Ko, ...
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The Relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) approach has been used by several groups to
devellop transport models for the intermediate relativistic energy regime.

The RBUU model developed by the Texas A&M and Stony Brook groups is a covariant microscopic
transport model for heavy ion collisions at SIS/GSI energies [59,57,60,61]. This model includes simuta-
neously the effects of mean field, two-body collisions, and the Pauli blocking for fermions. The covariant
RBUU transport equation is sovled by the test-particle method and the one-body phase space distribu-
tions are represented by point-like test-particles. In this model, only the nucleon,∆(1232) resonance,
and pion are treated explicitly and the isospin dependence is neglected.. Besides undergoing elastic and
inelastic two-body scatterings, these particles also propagate in mean-field potentials. For nucleons, their
potential is taken from the nonlinear Walecka model used in Ref. [59] or the effective chiral Lagrangian
of Ref. [62]. The∆ resonance is assumed to have the same mean-field potential as the nucleon, while the
mean-field potential for the pion is neglected.

This RBUU model allows one to investigate consistently the medium effects on hadron properties through
the change of the scalar and vector potential. Kaons together with its partners (hyperons or antikaons) are
produced in this model from pion-baryon and baryon-baryon reactions, i.e.,πB→ KY andBB→ BYK.
Antikaons are produced not only from pion-baryon and baryon-baryon reactions, i.e.,πB→ KK̄B and
BB→ BBKK̄, but also from the pion-hyperon reactionsπY → K̄N [63], whereY denotes eitherΛ or Σ.
Their cross sections are taken either from predictions of the boson-exchange model or from the empir-
ical values as in Ref. [60]. Annihilation of produced antikaons is included via the inverse reactions of
pion-hyperon reactions, i.e.,̄KN→ πY, as other absorption reactions involve the rarely produced kaons
and are thus unimportant. However, the annihilation of kaons is neglected as it has little effect on kaon
production [64]. Because of the small production probabilities of kaons, hyperons, and antikaons in
heavy-ion collisions at SIS energies, the above discussed reactions are treated perturbatively. ForΛ and
Σ, their mean-field potentials are taken to be 2/3 of the nucleon potential according to their light quark
content. For kaon and antikaon, their mean-field potentials are obtained from the chiral Lagrange in-
cluding both scalar and vector interactions [60]. Recently, the similar perturbative method has been also
extended to invetigate the subthreshold production of multistrange baryonΞ [66].

Relativistic BUU (Catania-Munich-Tübingen):

M. di Toro, C. Fuchs, T. Gaitanos, H. Wolter,...

The RBUU model developed by the Catania-Munich-Tübingen groups is a fully covariant transport
model for heavy ion collisions at SIS/GSI energies. In contrast to most other BUU models this model
is based on a representation of the one-body phase space distributions by covariant Gaussian test-
particles [8] instead of point-like test-particles. The collision integral incorporates elastic and inelas-
tic channels (∆ andN∗ resonance production with 1- and 2-pion final channels). The resonances feels
the same mean field potential as the nucleons, and the pions are propagated under the influence of the
Coulomb potential, however, they strongly interact with the hadronic environment via re-absorption pro-
cesses. In the strangeness sector, only the positive charged (K+) kaons were been considered in the same
way as in Ref. [6]. The RBUU approach has been recently extended for an appropriate description of the
isovector part of the nuclear equation of state [9,10]. It has been shown that a fully covariant formulation
is essential for the understanding of the Lorentz structure of the symmetry energy at supra-normal den-
sities [9, 10, 11, 12]. In particular one can directly probe the contribution of different isovector mesons:
competition between an isovector, vector repulsiveρ and an isovector, scalar attractiveδ field, as recently
suggested [13,14]. The major genuine relativistic effects, that cannot be revealed in other transport codes
where only the relativistic kinematics is included, are:
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• The different structure if the contributions of the vector and scalar Lorentz components to the
self-energies of protons, neutrons and of the various isospin states of other hadrons (∆±,0,++,
N+,0,Λ,Σ±,0). This implies an important modification of the standard numerical treatment of
the collision term when inelastic processes are included, in particular with respect to the energy
conservation. This has been discussed in detail in [12].

• The Lorentz boosting of the vector field contribution to the “magnetic force” acting on the baryons.
In ref. [9] it has been clearly shown that in neutron-rich systems this effect will lead to large
differences in neutron/proton flows at high transverse momenta.

A Relativistic Transport (ART):

Bao-An Li, C.-M. Ko,...

ART is a hadronic transport model which has in particular been designed for the AGS energy range
[67, 68]. It consists of a hadronic cascade supplemented by a Walecka type mean field. Particle produc-
tion is not described via string excitations but by an explicit treatment of the various hadronic reaction
channels. Cross sections are based on parameterisations of available data or determined within the reso-
nance model.

The ART model includes baryon-baryon, baryon-meson, and meson-meson elastic and inelastic scatter-
ings. It treats explicitly the isospin degrees of freedom for most particle species and their interactions,
making it suitable for studying isospin effects in heavy ion collisions [69]. Since it includes mean-field
potentials for nucleons and kaons, the ART model can also be used for studying the effect due to the
hadronic equation of state. Resonances such asρ and∆ are formed from pion-pion and pion-nucleon
scattering, respectively, with cross sections given by the standard Breit-Wigner form, and they also decay
according to their respective widths. The masses and widths of resonances are taken to be their values in
the vacuum, i.e., effects due to possible modifications in dense hadronic matter are neglected.

For baryon-baryon scatterings, the ART model includes the following inelastic channels:NN↔N(∆N∗),
NN↔ ∆(∆N∗(1440)), NN↔ NN(πρω), (N∆)∆↔ NN∗, and∆N∗(1440)↔ NN∗(1535). In the above,
N∗ denotes eitherN∗(1440) or N∗(1535), and the symbol(∆N∗) denotes a∆ or anN∗, Also included
are reaction channels relevant for kaon production, i.e.,(N∆N∗)(N∆N∗) → (N∆)(ΛΣ)K. For meson-
baryon scatterings, the ART model includes the following reaction channels for the formation and decay
of resonances:πN ↔ (∆N∗(1440) N∗(1535)), andηN ↔ N∗(1535). There are also elastic scatterings
such as(πρ)(N∆N∗) → (πρ)(N∆N∗). As an example, the cross section for the elastic scattering of
π0N is evaluated by including heavier baryon resonances with masses up to 2.0 GeV/c2 as intermediate
states using the Breit-Wigner form but neglecting interferences between the amplitudes from different
resonances [67]. The ART model further includes inelastic reaction channels such asπN ↔ (πρη)∆
and kaon production channels such as(πρωη)(N∆N∗)↔ K(ΛΣ). Kaon and antikaon elastic scatterings
with nucleons as well as inelastic channels for antikaons, such asK̄(N∆N∗)↔ π(ΛΣ), are included [70]
using parameterized experimental data [71]. Also included are kaon production channels involving three-
body final states,(πρω)(N∆N∗)→ KK̄N [70]. Because of the difficulty associated with the three-body
kinematics, the inverse kaon annihilation reactions of the above channels are neglected.

For meson-meson interactions, the ART model includes both elastic and inelasticππ interactions, with
the elastic cross section consisting ofρ meson formation and the remaining part treated as elastic scat-
tering. Kaon production from inelastic scatterings of light mesons is included via the the reactions
(πη)(πη)↔ KK̄ and(ρω)(ρω)↔ KK̄. Kaon or antikaon elastic scatterings with mesons in the SU(2)
multiplets except the pion are included using a constant cross section of 10 mb [67], while the kaon-pion
elastic scattering is modeled through theK∗ resonance [72].
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A Multi-Phase Transport (AMPT):

Che-Ming Ko, Bao-An Li, Zi-Wei Lin, Subrata Pal, and Bin Zhang
http://nt3.phys.columbia.edu/people/zlin/AMPT/

AMPT [15, 16, 17] is a Monte Carlo transport model for heavy ion collisions at relativistic energies. It
uses the Heavy Ion Jet Interaction Generator (HIJING) for generating the initial conditions, the Zhang’s
Parton Cascade (ZPC) for modelling the partonic scatterings, and A Relativistic Transport (ART) model
for treating hadronic scatterings. The default version of AMPT treats the initial condition as strings
and minijets and uses the Lund string fragmentation model as in HIJING, while the string melting ver-
sion of AMPT treats the initial condition as partons and uses a simple coalescence model to describe
hadronization.

Hadron String Dynamics (HSD):

E. Bratkovskaya, W. Cassing
http://www.th.physik.uni-frankfurt.de/ brat/hsd.html

The Hadron-String Dynamics (HSD) transport approach is a covariant microscopic transport model de-
veloped to simulate - relativistic heavy-ion collisions - proton-nucleus reactions - pion-nucleus reactions
in the energy range from SIS to RHIC.

General ideas:
The HSD transport approach [18,19,20] provides the numerical test-particle solution of a coupled set of
relativistic transport equations for particles with in-medium self-energies. It is based on quark, diquark,
string and hadronic degrees of freedom. High energy inelastic hadron-hadron collisions in HSD are de-
scribed by the FRITIOF string model (including PYTHIA) whereas low energy hadron-hadron collisions
are modelled based on experimental cross sections. The transport approach is matched to reproduce the
nucleon-nucleon, meson-nucleon and meson-meson cross section data in a wide kinematic range. HSD
takes into account the formation and multiple rescattering of leading pre-hadrons and hadrons. The major
aim of HSD is - within a single transport model - to gain an understanding about the nuclear dynamics,
the creation of dense and hot hadronic matter and the modification of hadron properties in a medium.

Ultra-relativistic Quantum Molecular Dynamics (UrQMD):

H. Stoecker, M. Bleicher, S. Soff, ....
http://www.th.physik.uni-frankfurt.de/ urqmd/

The Ultra-relativistic Quantum Molecular Dynamics model [21,22] is a microscopic model used to sim-
ulate (ultra)relativistic heavy ion collisions in the energy range from BEVALAC and SIS up to AGS, SPS
and RHIC. Main goals are to gain understanding about the following physical phenomena within a single
transport model: - Creation of dense hadronic matter at high temperatures - Properties of nuclear mat-
ter, Delta & Resonance matter - Creation of mesonic matter and of anti-matter - Creation and transport
of rare particles in hadronic matter. - Creation, modification and destruction of strangeness in matter -
Emission of electromagnetic probes
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Quark-Gluon String Model (QGSM):

Amelin, L. Bravina, C. Fuchs, S. Toneev, E. Zabrodin,...

The Quark-Gluon String Model (QGSM) [23, 24, 25, 26] incorporates partonic and hadronic degrees of
freedom and is based on Gribov-Regge theory (GRT) [27] accomplished by a string phenomenology of
particle production in inelastic hadron-hadron collisions. To describe hadron-hadron, hadron-nucleus
and nucleus-nucleus collisions the cascade procedure of multiple secondary interactions of hadrons was
implemented. The QGSM incorporates the string fragmentation, formation of resonances, and rescat-
tering of hadrons, but simplifies the nuclear effects neglecting, e.g., the mean fields or evaporation from
spectators. As independent degrees of freedom the QGSM includes octet and decuplet baryons, octet and
nonet vector and pseudoscalar mesons, and their antiparticles. The momenta and positions of nucleons
inside the nuclei are generated in accordance with the Fermi momentum distribution and the Woods-
Saxon density distribution, respectively. Pauli blocking of occupied final states is taken into account.
Strings in the QGSM can be produced as a result of the colour exchange mechanism or, like in diffrac-
tive scattering, due to momentum transfer. The Pomeron, which is a pole with an interceptαP(0) > 1
in the GRT, corresponds to the cylinder-type diagrams. Thes-channel discontinuities of the diagrams,
representing the exchange byn-Pomerons, are related to the process of 2k(k≤ n) string production. If
the contributions of alln-Pomeron exchanges to the forward elastic scattering amplitude are known, the
Abramovskii-Gribov-Kancheli (AGK) cutting rules [28] enable one to determine the cross sections for
2k-strings. Hard gluon-gluon scattering and semi-hard processes with quark and gluon interactions are
also incorporated in the model [29]. The inclusive spectra in the QGSM have automatically the correct
triple-Regge limit for the Feynman variablex→ 1, double-Regge limit forx→ 0, and satisfy all conser-
vation laws. The particular stages of the collision model, namely (i) initialisation of interacting projectile
and target nuclei, (ii) string formation via inelastic nucleon-nucleon (hadron-hadron) interaction, (iii)
string fragmentation, i.e. hadronization, and (iv) hadron-hadron rescattering, are solved basically by
Monte Carlo simulation techniques.
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model baryons mesons pot. strings
dynamical perturbative dynamical perturbative

QMD ∆,N∗ with M ≤ 2 GeV Λ,Σ π K+,η,ρ,ω,φ U(ρ, p) NO
IQMD ∆(1232) Λ,Σ π K± U(ρ, p) NO

BRoBUU ∆,N∗ with M ≤ 2.2 GeV Λ,Σ π,η,σ,ρ,ω K±,φ U(ρ, p) NO
GiBUU see text Λ,Σ see text K± U(ρ, p) YES
RBUU1 ∆(1232),N∗(1440) Λ,Σ π K+ Σ(ρ,β) NO
RBUU2 ∆(1232) Λ,Σ,Ξ π K± Σ(ρ) NO

ART ∆,N∗(1440),N∗(1535) − π,K±,η,ρ,ω − Σ(ρ) NO
AMPT SU(3) − SU(3) (ps & v) − NO YES
HSD Σ(ρ) YES

UrQMD U(ρ) YES
QGSM SU(3) − SU(3) (ps & v) − NO YES

Table 3.1: Hadronic degrees of freedom which are explicitly (dynamical) or perturbatively included in the default
versions of the various models. The treatment of the nuclear mean field is indicated byU (non-relativistic) andΣ
(relativistic). (1Catania/Munich/Tübingen,2Texas A&M/Stony Brook)

Model Emin Emax

QMD ≥ 100 MeV ∼3-4 GeV
IQMD ≥ 100 MeV ∼2 GeV

BRoBUU ≥ 100 MeV ∼4 GeV
GiBUU ≥ 100 MeV ∼40 GeV
RBUU1 ≥ 100 MeV ∼2 GeV
RBUU2 ≥ 100 MeV ∼2 GeV

ART ≥ 100 MeV AGS
AMPT ≥ SPS RHIC
HSD ≥ 100 MeV RHIC

UrQMD ≥ 100 MeV RHIC
QGSM ≥ 10 GeV RHIC

Table 3.2: Energy range in which the different models are applicable. (1Catania/Tübingen/Munich,2Texas
A&M/Stony Brook)

Table 3.1 gives a summary of the treatment of the mean field and the hadronic degrees of freedom which
are at present included in the transport models listed below. Table 3.2 summarises the energy range
where the various models are safely applicable. SPS corresponds thereby to the top SPS energy of about
160 AGeV and RHIC to the top RHIC energy given by

√
s= 200 AGeV in the centre-of-mass system.

3.4.2.4 Benchmarks

This subsection addresses the question how consistent the results of present transport models are. Differ-
ences occur due to the use of different physical input such as elementary cross sections or the explicitley
included DOFs. This concerns the number of baryonic and mesonic resonances which are included and
elementary cross sections which are not constrained by data. There one has to rely on model assumptions
and these assumptions differ in the various codes.

The type of the model, i.e. BUU or QMD should not be of relevance as long as 1-body observables are



considered. However, the corresponding simulation codes are complex and sometimes based on different
numerical and methodical solution techniques. Although physical observables should be independent on
such technical questions one has to exclude them as possible sources of uncertainties as far as possible.
This was the major goal of two workshops held in Trento 2001 and 2003 where most groups doing
transport model calculations at SIS and higher energies participated. In a first round of homeworks the
default versions of the codes were compared, in a second round further specifications were made for a
detailed comparison at SIS energy range. The results of the second round have been published in [30].
Fig. 3.4 shows exemplarily the result of the benchmark test for the pion (π+,π−) production in central
(b=1 fm) Au+Au reactions at 0.96 and 1.48 AGeV and Ni+Ni reactions at 1.93 AGeV.

For this comparison a nuclear mean field corresponding to a soft EoS (K∼200 MeV) was applied and
in most models a constant∆ width Γ∆ = 120 MeV, respectively a constant lifetimeτ = 1/Γ∆ has been
used. A constant resonance life time is unphysical and not used in the default versions of the codes
but it simplifies such a comparison to some extent, in particular when predictions for pion production
are considered. There is an overall agreement in the predictions of the models on the pion rapidity
distributions at 1 AGeV, while at higher energies the discrepancies increase. Partially this is due to
the different number of included resonances: here in QMD and IQMD only the∆(1232) andN∗(1440)
resonances have been included, while the Giessen RBUU includes additionally theN∗(1535) and GiBUU
also higher lying resonances. However, the GiBUU calculations were performed with the in-medium
NN↔ NRandNN↔ NNπ cross sections which leads to a reduction at the corresponding pion yields.
Figure 3.5 compares the rapidity distributions of protons and produced hadrons (π±, K± andp̄) in central
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(b=1 fm) Pb+Pb reactions at 40 AGeV. Predictions from various transport models are compared: AMPT,
HSD, UrQMD.
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The theoretical description of relativistic nucleus-nucleus collisions is a formidable task since the time
evolution of a complicated many-body quantum system has to be followed from the initial state of col-
liding nuclei - in their correlated groundstates - via intermediate partonic phases (with rather unknown
properties) incorporating dynamical hadronization with nontrivial hadronic spectral functions to a final
expansion stage dominated by hadronic resonant scattering. Whereas the dynamics of a low density
hadron gas with moderate collision rates and/or self energies appears to be sufficiently under control,
even the dynamics of a high density hadron gas with roughly 1 hadron per fm3 is not well understood in
view of an eigenvolume of a pion of about 1 fm3 or nucleon of about 2 fm2. What are the properties of
the hadrons at high baryon density and/or temperature (belowTc)? Do vacuum hadronic resonance states
survive in this environment? What are the scattering rates if chiral symmetry is partially restored? What
are the contributions from multiple scattering processes? All these open questions are directly linked to
the viscosity of a high density hadron gas as well as to the pressure generation in the hadronic phase.

The situation is even worth for temperatures aboveTc. Here the effective degrees of freedom are much
under debate. How far in temperature (energy density) do hadronic (color neutral) correlators survive?
What is the role of gluons in the partially deconfined phase? Do gluons all become very massive? Do
quarks become also very massive? What is the role of colored resonance states (qq̄) aboveTc? What are
the transport coefficients in the strongly coupled plasma like shear and bulk viscosity? What is the role
of collective modes and dynamical instabilities in the thermalization of the system? To what extent do
multi-parton interactions play a roleetc.? Furthermore, how can the hadronization process (or any phase
transition) be described dynamically without decreasing entropy or violating conserved currents? The
list of unsettled questions is even much longer and will need experimental information for at least partial
answers.

3.5.1 Towards a consistent off-shell transport approach

Any interacting (or decaying) particle is characterized by a spectral function of finite width, i.e. it cannot
appropriately be described by a quasi-particle of infinite lifetime. This phenomenon is well known since
about half a century [1], but actual solutions in terms of transport calculations have only been presented
since the year 2000 [2] and are still of matter of discussion especially with respect to self energiesΣ><,ret

that determine the mean-field and off-shell propagation dynamics as well as the mutual collision rates
(cf. Section 2). We recall that only in case of local self energies the equation of state is affected by
the collision terms (cf Section 2). However, such an approximation is questionable and will have to be
refined in future. For the further discussion we, nevertheless, will adopt this approximation and point out
those problems that arise independently.

In principle, the Kadanoff-Baym equations - derived in lowest order from the two-particle irreducible
(2PI) actionΓ[G] - provide a convenient starting point but the resulting transport equations do not directly
allow for a test-particle solution due to the back-flow problem (cf Section 2) and have to be solved on
an eight-dimensional lattice in phase space including a nonlocality in space-time. The question arises,
if further approximations to these equations - like the gradient expansion in phase space - do perform
well enough in case of inhomogenuos systems with strong coupling. Furthermore, is the Botermas-
Malfliet (BM) substitution [3] for the backflow-term accurate enough to allow for a convenient test-
particle simulation of the transport equation?

Some of these questions have been already addressed in Refs. [4,5] for the case of a scalar relativistic field
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theory with strong coupling. Here the numerical studies on a fixed momentum grid have shown that the
gradient expansion in time is a ’reasonable’ approximation even for large coupling. This goes in line with
the experience in transport studies in the quasi-particle limit which involves also a first order gradient
expansion in space-time. Furthermore, the BM approximation for the backflow-term was found to hold
very well in case of the scalarΦ4-theory. Consequently, theΦ4 model example allows for a convenient
test-particle solution - including dynamical spectral functions - when allowing for 1↔ 3 transition rates
(apart from the conventional 2↔ 2 scattering processes) to achieve proper chemical equilibrium. Note,
however, that presently no related proof exists for the case of strongly coupled Yang-Mills systems and
that the exact Noether current is conserved only up to first order in the phase-space gradients!

In spite of the apparent (possible) validity of relativistic transport equations in BM approximation further
problems pop up in case of low mass quanta with a large spectral width. This comes about as follows: The
energy integral of the spectral function is normalized to unity since it is directly connected to the equal-
time commutator of the fields which provides the quantization of the theory and the particle interpretation
accordingly. In case of a large spectral width the spectral functionA(M2) is nonvanishing for space-like
invariant mass squared (M2 < 0); this fraction of the spectral function physically describest-channel
scattering processes whereas the time-like sector corresponds tos-channel processes. Note that space-
like parts of the spectral function do not violate micro-causality! Consequently a particle interpretation
has to be attributed to ’field quanta’ that (depending on the environment (e.g. temperature)) may change
from t- to s-channel processes. Presently it is not known how to realize this even in off-shell transport
where onlys-channel processes are treated dynamically in a more consistent way, i.e. fractions of the
spectral function moving within the light-cone.

Whereas in the high temperature limit the notion of a weakly interacting quasi-particle might be valid,
i.e. a well defined pole in the propagator with small negative imaginary part, the situation is not clear for
the strong QGP (sQGP) where a finite spectral function not necessarily might arise from a well defined
pole structure in the lower imaginary plane but simply due to momentum-dependent interactions of the
field quanta. Apart from the gauge-fixing problem it is also not clear if a ’parton propagator’ posesses
a positive definite spectral function if the quanta are partially confined. We mention that presently no
transport theory is defined in case of systems with ’ill defined’ propagators or spectral functions that may
become negative!

3.5.2 Consistent treatment of many-body processes

Whereas the dynamics of low density fermion or bose systems are dominated by 2-body scattering (or
1 ↔ 2 reactions) this no longer holds true in case of high density systems with an average separation
d = ρ−1/3 which is shorter than the average mean-free pathλ of the constituents. In this case 2↔ 3, 2↔ 4
or 3↔ 4 etc. processes are expected play a dominant role. In fact, the importance of multi-meson fusion
channels for baryon-antibaryon production has been pointed out in Refs. [7, 8, 9] for nucleus-nucleus
collisions from AGS to RHIC energies. Furthermore, the significance of 2↔ 3 has been demonstrated
in Ref. [6] for partonic equilibration at RHIC energies. In addition, the notion of a partonic liquid for the
sQGP [10, 11] implies that the higher order interaction rates dominate the 2-body scattering processes.
Since a strongly coupled QGP is also expected to be produced at FAIR energies [12] it is thus mandatory
to develop theoretical concepts that allow for an adequate description of many-body processes. This
holds true also for the issue of thermal and chemical equilibration where many-body processes are in-
volved simply by ’detailed balance’. Note that ’detailed balance’ is a necessary requirement for transport
theories to describe properly the approach to the ’physical’ equilibrium state.

The present knowledge may be summarized as follows: Starting from 2→ n (n≥ 1) processes, which
are partly fixed by experimental data, the inverse reactionsn→ 2 can be fixed by detailed balance if
the transition probability can be described by a characteristic matrix elementM 2 times the final state



n-body phase space [9]. As demonstrated in the latter work this recipe holds for on-shell as well as
off-shell processes provided that Fermion Pauli-blocking or Bose-enhancement do not play a major role.
The actual task, however, is tedious! Any two-body initial channel has to be decomposed into the final
channels withn different particles of fixed masses and quantum numbers such that ’detailed balance’
can be applied riguously. This easily leads to hundreds to different final channels in 2→ n reactions; a
problem that has to be solved for all two-body scattering processesi + j wherei, j denote the degrees
of freedom involved in the system. Furthermore, the solution of the off-shell dynamics requires the
knowledge of the off-shell matrix elementsM in a wide dynamical regime! The present strategy to
employ fitted on-shell matrix elements might not work in all cases!

A numerical solution for 2↔ n (n≥ 1) processes in case of high density systems is available by now. It
is denoted as the ’in-cell method’ originally proposed by Babovsky et al. [13] and employed for many-
body processes in Ref. [9, 6]. This method is Lorentz invariant and also applicable in case of high
density systems where geometrical collision criteria either break down or violate micro-causality [9, 6].
In principle the ’in-cell method’ also should work for many-body transitionsk↔ l with k, l ≥ 3. This
has not be proven numerically so far due to the large CPU requirements, but should be possible for actual
applications in a couple of years.

While there is - in principle - some systematic strategy to solve the 2→ n (n≥ 1) scattering problem (as
outlined above) the situation is worse form→ n (n≥ 1) for m≥ 3 since there is no experimental informa-
tion on processes with distinguished 3 particles in the initial state. One might employ perturbation theory
to evaluate such matrix elements; it is worth a try. Note, however, that in the strong coupling regime per-
turbation theory is essentially an uncontrolled exercise! Without guidance by sensitive experimental data
the problems might not be solvable.

3.5.3 Phase transitions

In hydrodynamical descriptions of many-body systems a local equilibrium is assumed which allows to
follow the time evolution of the system as a function of thermodynamical Lagrange parameters such as
inverse temperatureT−1, chemical potentialµ or pressureP. In this framework (of ideal fluid dynamics
with vanishing viscosity) the time evolution is fully determined by conservation laws substituted by
an equation of state (EoS) that might involve first or second order phase transitions. However, out of
equilibrium no Lagrange parameters can properly be defined for a strongly interacting system such that
the notion of a phase-transition - especially for finite systems as those of interest here - is not well defined.
Accordingly, the description of phase transitions in off-shell transport provides a major challenge for the
future.

There are a few limiting cases where actual solutions are possible: This holds for systems in approximate
equilibrium that are governed by the EoS (as in ideal hydrodynamics). In this case one may model the
density/temperature dependence of the interaction such that the total energy densityε(T,µ) exhibits a
first (or second order) phase transition. This strategy holds for local interactions and can be employed
in transport calculations if the degrees of freedom do not change at the phase transition point (or line).
Unfortunately, this limiting case does not apply for the problem of interest, i.e. the deconfinement of the
elementary degrees of freedom that are bound in hadrons (in vacuum).

The solution of the problem has to include transitions between the different degrees of freedom: off-
shell partons↔ off-shell hadrons in the vicinity of the transition border (thermodynamically inT andµ).
This can be accomplished by local (in space-time) transition rates which either can be calculated in some
model (NJL or extended versions like PNJL) or put in by hand with an educated guess (as in PHSD where
the transition matrix elements peak around the phase boundary). Energy- and momentum conservation
can easily be satisfied in off-shell dynamics due to the finite spectral width of all degrees of freedom,
however, the entropy might change significantly when partons merge to off-shell hadrons. This fact is due
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to a change of the bag pressure (parton condensates) that enters the pressure as well as its derivative wrt.
temperature, i.e. the entropy. Note that the condensates also enter the energy density of the many-body
system. Presently only approximate techniques exist that deal with a dynamical hadronization scenario
that conserves the currents as well avoids a decrease of entropy in the phase transition from the sQGP to
the interacting hadronic gas. We will have to rely on some modeling in comparison to experimental data
in order to find out what ’confinement’ actually means.
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