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One of the clearest signs of chiral symmetry breaking
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Motivation

• chiral restoration: spectra of vector and axial-vector currents become identical

• order parameters drop (fπ , 〈q̄q〉, ...)

• What does that mean for single hadrons?

• more modest: test concepts of many-body theory

 interest in in-medium changes of hadronic properties

 e.g. search for dropping masses

• How to observe this?

• interesting probes: neutral vector mesons ρ0, ω — of course not the only ones!
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Hadronic modeling

• central quantity: (in-medium) spectral function for hadron H

A(q) = −ImD(q) = −Im
1

q2 − m2

H − Π(q)

=
−ImΠ(q)

[q2 − m2

H − ReΠ(q)]2 + [ImΠ(q)]2

• decomposition: Π(q) = Πvac(q) + Πmed(q)

• linear-density (“ρT ”) approximation for (in-medium) self energy

Πmed(q) =
∑

X

ρXTXH(q)

with medium constituents X (e.g. N , π)

• TXH : (vacuum) forward scattering amplitude for X + H

• imaginary part of T from inelasticities data for backward reaction



Linear-density approximation (low-density theorem)

• underlying idea: probe (H) scatters on single medium constituents

• “trivial” in-medium effect

• only vacuum quantity (scattering amplitude) enters

• works if density is not too large

• break down depends on probe and medium

• what comes beyond?

• hadronic language: n-body scattering amplitudes with n > 2

• becomes uneconomical

• additional effects on top or only different language?

• connection to in-medium change of condensates?



Connection to change of condensates? Speculative!

• change of vacuum structure possibly triggered by excluded volume (percolation)

• medium constituents carry chirally restored phase in their interior

• outside: chirally broken phase

• increasing density percolation

• purely geometrical effect

• covered by linear-density approximation

• other effects on top?

• if hadronic many-body states form complete set of states

 all in-medium effects related to hadronic many-body scattering amplitudes

• maybe more economical: connection of in-medium properties to condensates

• so far no direct relations from first principles model dependence



Forward scattering amplitude

Π(q) =
∑

X

ρXTXH(q)

• everything well under control for low densities?

• in principle yes: need “only” vacuum scattering amplitudes TXH

• in practice no: H can be unstable

 no H beam, no direct access on scattering amplitude

• sizable model dependences

• e.g. for ρ meson in cold nuclear matter figs.
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How fancy is linear-density approximation?

• simple toy model for dilepton production ∼ nB(q)Aρ(q)/q
2

– mediated by ρ meson (VMD)

– ρ meson couples to 2π and resonance-hole (RN−1)

 Aρ(q) =

−ImΠ2π(q) − ImΠRN−1(q)

[q2 − m2
ρ − ReΠ2π(q) − ReΠRN−1(q)]2 + [ImΠ2π(q) + ImΠRN−1(q)]2

(note: ΠRN−1 = ρNTρN→R→ρN )

• appearance of density in denominator causes non-elementary effect:

 corresponding elementary reactions:

−ImΠ2π(q) − ImΠRN−1(q)

[q2 − m2
ρ − ReΠvac(q)]2 + [ImΠvac(q)]2



in-medium ρ meson spectral information
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• corresponding elementary reactions:

−ImΠ2π(q) − ImΠRN−1(q)

[q2 − m2
ρ − ReΠvac(q)]2 + [ImΠvac(q)]2

=
ImΠ2π(q)

ImΠvac(q)
Avac

ρ +
ImΠRN−1(q)

ImΠvac(q)
Avac

ρ

i.e. branching ratios times spectral information

π

π

ρ γ
l−

l+

N

π

N∗ ρ

γ

N

l+

l−

↪→ data required!



Elementary reactions versus full in-medium spectrum (at ~q = 0!)
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Conclusions from simple toy model

• structures already present in elementary reactions

• “denominator effect”: level repulsion and overall depletion

• elementary reactions should be measured

 πN to dileptons, not only NN

(in latter resonance structure more smeared out, phase space)

• note: “elementary” reactions are genuine in-medium (π in initial state)



How fancy is linear-density approximation? Part II

• chiral mixing (s-wave) • similar non-chiral effect (p-wave)

a1
ρ

γ

π

l+

l−

ω
ρ

γ

π

l+

l−

• the important aspect (cf. also kaon potentials):

strength of chiral mixing is dictated by chiral symmetry breaking

• note: easy for thermal hadronic model (calculate collisional loss of ρ),

complicated for transport (dilepton production from three-body initial state)



Dropping Masses

• includes effects beyond linear-density approximation

• propose model which links elementary hadronic parameters (bare masses,

coupling constants) e.g. with quark condensate (Brown/Rho)

mH,med.

mH,vac.
=

(

〈q̄q〉med.

〈q̄q〉vac.

)α

• α might be density/temperature dependent

• oversimplified? at low densities in conflict with low-density theorem

 should be fused with standard many-body effects

• different, economic language for hadronic higher-order many-body effects?

• alternative: resummation techniques, self consistency

• or additional effects on top of hadronic effects?



Further ideas I: QCD sum rules

• no prediction for

mass shift

• but constraints for

hadronic models

• relation to four-,

not two-quark con-

densates
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Further ideas II: Hidden local symmetry

• vector mesons treated as gauge bosons of local chiral symmetry

 vector meson masses generated by chiral symmetry breaking

(Higgs mechanism)

 vector mesons become massless at chiral restoration

 dropping masses

• but only for vector mesons, not for all hadrons

(maybe for nucleon as chiral soliton???)

• ω meson is not necessary as gauge boson,

but in SU(3) member of vector meson nonet

• note: also here relation to four-, not two-quark condensates



Experimental significance for dropping ω mass
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Further ideas III: Chiral quartets of baryons

• for linear realization of chiral symmetry:

 sort baryons in chiral multiplets,

e.g. ∆(1232), N(1520), ∆(1700), N(1720)

 mass splitting by symmetry breaking

• Jido/Hatsuda/Kunihiro, PRL 84 (2000) 3252

• degeneracy at chiral restoration

• observable?



chiral quartets
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Summary and Outlook

• hadronic modeling, standard many-body effects, low-density theorem

• dropping mass models, relation to condensates

(two-quark, four-quark, gluon condensates?)

• connections between them unclear

• maybe standard effects are enough (percolation)

• sizable model dependences in hadronic models

• qualitatively most effects already there in standard (in-medium) reactions

• n-body reactions (n > 2) might be important for dilepton production

• data on elementary processes necessary (πN to dileptons)

• stronger connections between hadronic models and QCD required!



How important can three-body reactions be?

a1
ρ

γ

π

l+

l−

• clear statement possible for thermal system:

 dilepton yield ∼ nB(q)A ≈ e−q0/TA

→ e−q0/T ImΠρπ→a1
∼ e−q0/T e−Eπ/T = e−Eπ1/T e−Eπ2/T e−Eπ3/T

• If you regard πρ → a1(→ 3π) as important for spectral function and therefore

for dileptons (e.g. above q2 > 1 GeV2)

 include 3π → a1 → πρ in transport



drop of quark condensate with temperature (Gerber/Leutwyler, NPB 321 (1989) 387)


