EoS Constraints from Astrophysics of Compact Stars

ECT* Trento, 1. June 2006

David Blaschke

Institut für Physik, Universität Rostock david.blaschke@uni-rostock.de

Bogoliubov Laboratory for Theoretical Physics, JINR Dubna

T. Klähn, E.N.E. van Dalen, A. Faessler, C. Fuchs, T. Gaitanos, H. Grigorian, A. Ho, E.E. Kolomeitsev, M.C. Miller, G. Röpke, F. Sandin, J. Trümper, S. Typel, D.N. Voskresensky, F. Weber, H.H. Wolter

Exploring the Phase Diagram

Outline

- ➤ High Density EoS Test Scheme
 - ★ NS Maximum Mass
 - ★ NS Mass-Radius relation
 - ★ NS Gravitational binding
 - **\star** Direct Urca (direct β -decay)
 - $\star~$ Flow in HIC
- Nuclear Matter EoS
- ►> Test Scheme vs. Nuclear Matter
- Superconducting Quark Matter and Phase Transition
- ►> Test scheme vs. Quark-Nuclear Matter
- ► Consequences for the Phase Diagram
- Conclusions

Compact Star Masses (1σ)

J. M. Lattimer and M. Prakash

Phys. Rev. Lett. 94, 111101 (2005)

binary radio pulsars: $M_{BRP} = 1.35 \pm 0.04 M_{\odot}$

PSR J0751+1807

(D. J. Nice et al, astro-ph/0508050)

 $M = 2.1^{+0.2}_{-0.2} {+0.4}_{-0.5} M_{\odot}$

 \rightarrow constrains minimal maximum mass

of an EoS model

Mass-Radius Constraints from QPO's

 $\nu_{max} \approx \nu_{orbit} < \nu_{ISCO}$

Keplerian Orbit r_K $R < r_k = (GM/4\pi^2 \nu_{max}^2)^{1/3} \to R_{max}(M)$ $M < 2.2M_{\odot}(1000Hz/\nu_{max})(1+0.75j) \to M_{max}$ $M \approx 2.2M_{\odot}(1000Hz/\nu_{max})(1+0.75j)$

if(!) $\nu_{max} \approx \nu_{ISCO}$

M. van der Klies, ARA&A 38, 717 (2000)

M-R Constraint from Radio Quiet Isolated NS RXJ1856

RXJ1856 black body spectrum: $T_{\infty} = 57 \text{ eV}$ measurement of distance:60 pc (2002)

 \rightarrow photospheric radius:

 $T_{\infty} = 57 \text{ eV}$ 60 pc (2002) \rightarrow 117 pc (2004) $R_{\infty} = R(1 - R/R_S)^{-1/2}$ $R_S = 2GM/R$

Mass Radius Constraints									
QPO	: M-R upper limits								
ISCO	: max. mass constraint								
RXJ185	6: M-R lower limits								

each region...

- \rightarrow represents a different object
- \rightarrow should be touched at least once
- J. Trümper et al., Nucl. Phys. Proc. Suppl. 132, 560 (2004)

D. Barret, J.-F. Olive, M.C. Miller, Mon. Not. Roy. Astron. Soc. 361, 855 (2005)

Gravitational Mass \leftrightarrow **Baryon Number J0737-3039**

Double Pulsar System J0737-3039

Pulsar A $P^{(A)}$ = 22.7 ms, $M^{(A)} \approx 1.338 M_{\odot}$

Pulsar B $P^{(B)} = 2.77 \text{ ms}, M^{(B)} = 1.249 \pm 0.001 M_{\odot}$ (record!)

Progenitor ONeMg white dwarf, driven hydrodyn. unstable by

 e^- captures on Mg & Ne; no mass-loss during collapse

Observational constraint for $M(M_N)$ from PSR J0737-3039:

- observed NSs gravitational mass (remnant star) $M^{(B)} = 1.248 1.250M$
- critical baryon mass of progenitor ONeMg white dwarf $M_N^{(B)} = 1.366 1.375 M$

Theory: $M(M_N)$ characteristic for remnants EoS $M = 4\pi \int_0^R dr r^2 \varepsilon(r)$; $M_N = uN_B = 4\pi u \int_0^R dr \frac{r^2 n(r)}{\sqrt{1-2GM(r)/r}}$ (conversion of baryon number to mass by u = 931.5 MeV)

P. Podsiadlowski et al., Mon. Not. Roy. Astron. Soc. 361, 1243 (2005)

Direct Urca Process: $n \rightarrow p + e^- + \bar{\nu}_e$ (β - decay)

NS cooling – different masses

Direct Urca Process

$$\beta$$
 - decay: $n \rightarrow p + e^- + \bar{\nu}_e$, $n \rightarrow p + \mu^- + \bar{\nu}_\mu$

Mass Population Analysis of young nearby neutron NS:

S. Popov et al., Astron. Astrophys. 448, 327 (2006)

Elliptic Flow in HIC

Heavy Ion Collisions:

P. Danielewicz et al., Science 298, 1592 (2002)

Flow data constrain EoS up to $n \approx 4n_0$

 \rightarrow finite range of possible P(n) for given n

Nuclear Matter Equations of State (EoS)

Several approaches to describe dense nuclear matter

► Equations of State at T = 0

$$\varepsilon(n_n, n_p, n_e, n_\mu) \to \varepsilon_h(n_n, n_p) + \sum_{e,\mu} \varepsilon_i(n_i),$$

$$\mu_i = \frac{\mathrm{d}\varepsilon}{\mathrm{d}n_i}, P = \sum_{n,p,e,\mu} \mu_i n_i - \varepsilon_h - \varepsilon_l$$

►→ expanding binding energy per particle in terms of isospin asymmetry $\beta = \frac{n_n - n_p}{n_n + n_p} = 1 - 2x_p, \ n = n_n + n_p$

$$E(n,\beta) = E_0(n) + \beta^2 E_S(n)$$

➤ Thermodynamical Identities hold in SNM and NSM

Nuclear Matter Equations of State (EoS)

Model	$n_{\rm sat}$	$\frac{a_V}{a_V}$	K	$\frac{\beta - (n_n)}{K'}$	$\frac{n_p}{J}$	$\frac{r_n + r_p}{L}$	$\frac{m_D}{m_D}$
	[fm ⁻³]	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]	
NLρ	0.1459	-16.062	203.3	576.5	30.8	83.1	0.603
$NL ho\delta$	0.1459	-16.062	203.3	576.5	31.0	92.3	0.603
DBHF	0.1779	-16.160	201.6	507.9	33.7	69.4	0.684
DD	0.1487	-16.021	240.0	-134.6	32.0	56.0	0.565
D^3C	0.1510	-15.981	232.5	-716.8	31.9	59.3	0.541
KVR	0.1600	-15.800	250.0	528.8	28.8	55.8	0.800
KVOR	0.1600	-16.000	275.0	422.8	32.9	73.6	0.800
DD-F	0.1469	-16.024	223.1	757.8	31.6	56.0	0.556
	n [fm	a_v	0,5	E ⁸⁰ 40 40 40 40		n _{sat}	J -

Direct Urca Process

 $n \rightarrow p + e + \bar{\nu}_e$ implies $p_n \leq p_p + p_e$, same for muons: $e \leftrightarrow \mu$ charge neutrality: $n_p = n_e + n_\mu$, i.e. $p_p^3 = p_e^3 + p_\mu^3$ results in

$$x_p \ge x_{DU}(x_e) = [1 + (1 + x_e^{1/3})^3]^{-1}$$
 $x_e = n_e/(n_e + n_\mu)$

▶ no muons: $x_{DU} = 11.1\%$

► relativistic limit ($n_e = n_\mu$): $x_{DU} = 14.8\%$

NL ρ , NL $\rho\delta$, DBHF : DU occurs below 2.5 n_0

Direct Urca Process

 $n \rightarrow p + e + \bar{\nu}_e$ implies $p_n \leq p_p + p_e$, same for muons: $e \leftrightarrow \mu$ charge neutrality: $n_p = n_e + n_\mu$, i.e. $p_p^3 = p_e^3 + p_\mu^3$ results in

$$x_p \ge x_{DU}(x_e) = [1 + (1 + x_e^{1/3})^3]^{-1}$$
 $x_e = n_e/(n_e + n_\mu)$

no muons:

$$x_{DU} = 11.1\%$$

► relativistic limit ($n_e = n_\mu$): $x_{DU} = 14.8\%$

Mass Radius Relations

 \rightarrow agreement with all mass and mass-radius constraints for DBHF, DD, D³C

Gravitational Binding $M(M_N)$ for J0737-3039 (B)

 \rightarrow agreement only for 1% baryon loss during collapse (DBHF, KVOR, DD-F)

Flow Constraint

 \rightarrow constraint fulfilled for NL ρ , NL $\rho\delta$, KVR, KVOR, DD-F; DBHF at low densities

Consequences: Universality conjecture for $\beta^2 E_S(n)$

Exclude NL ρ , NL $\rho\delta$, DBHF since DU constraint violated ($M_{DU} < M_{typ}$) \rightarrow universal $\beta^2 E_S$

Consequences: Sharpening the Flow Constraint

How strong is the flow constraint?

LB not reliable \leftrightarrow Maximum mass constraint demands stiff EoS

(applied "universal" $\beta^2 E_S$ (error bars!))

Result

Model	$M_{ m max} \ge$ 1.9 M_{\odot}	$M_{ m max} \ge$ 1.6 M_{\odot}	$M_{ m DU} \ge$ 1.5 M_{\odot}	$M_{ m DU} \ge$ 1.35 M_{\odot}	4U 1636-536 (u)	4U 1636-536 (I)	RX J1856 (A)	RX J1856 (B)	J0737 (no loss)	J0737 (loss 1% M_{\odot})	SIS+AGS flow constr.	SIS flow+ K^+ constr.	No. of passed strong tests	No. of passed weak tests
NL ho	_	+	_	_	_		_	_	_	_	+	+	1	2
$NL ho\delta$	_	+	_	—	_	_	_	—	—	_	+	+	1	2
DBHF	+	+	_	—	+	+	_	+	_	+	_	+	2	5
DD	+	+	+	+	+	+	—	+	—	—	_	—	3	4
D^3C	+	+	+	+	+	+	—	+	—	—	_	—	3	4
KVR	0	+	+	+	_	0	_	—	—	+	+	+	3	5
KVOR	+	+	+	+	—	+	—	_	—	0	+	+	3	5
DD-F	+	+	+	+	_	+			_	+	+	+	3	5
Complementary scheme with strong (left columns) and weak (right columns) constraints														
Favourite EsoS: DBHF, KVR, KVOR, DD-F; None passes all constraints !														

Quark Matter EoS: NJL-type Model

$$S[\bar{\psi},\psi] = \sum_{p} \bar{\psi}(\not{p} - \hat{m})\psi$$

+ $\sum_{p,p'} \left[(\bar{\psi}g(p)\psi)G_{S}(\bar{\psi}g(p')\psi) + (\bar{\psi}i\gamma_{0}g(p)\psi)G_{V}(\bar{\psi}i\gamma_{0}g(p')\psi) + (\bar{\psi}i\gamma_{5}\tau_{2}\lambda_{2}Cg(p)\bar{\psi}^{T})G_{D}(\psi^{T}Ci\gamma_{5}\tau_{2}\lambda_{2}g(p')\psi) \right],$

Bosonization (Hubbard-Stratonovich trick) \rightarrow Mean-field approximation

 $\Omega_q(\phi,\omega_0,\Delta;\mu_u,\mu_d,T) = \frac{\phi^2}{4G_S} + \frac{|\Delta|^2}{4G_D} + \frac{\omega_0^2}{4G_V} - T\sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T}\tilde{S}^{-1}(i\omega_n,\vec{p})\right)$ Nambu-Gorkov Propagator

$$\tilde{S}^{-1}(p_0, \vec{p}) = \begin{pmatrix} \not p - \hat{M}(p) - \hat{\mu}\gamma_0 & \Delta\gamma_5\tau_2\lambda_2 g(p) \\ -\Delta^*\gamma_5\tau_2\lambda_2 g(p) & \not p - \hat{M}(p) + \hat{\mu}\gamma_0 \end{pmatrix}$$

Dynamical quark mass matrix (NJL: $g(p) = \Theta(\Lambda - |p|)$

$$\hat{M}(p) = \operatorname{diag}(m_u + \phi g(p), m_d + \phi g(p))$$

Renormalized chemical potential matrix

$$\hat{\mu} = \operatorname{diag}(\mu_u - \omega_0, \mu_d - \omega_0)$$

Nonlocal, Chiral Quark Model (MF)

▶ chiral gaps (constituent quark mass $m_i = m_i^0 + \phi_i$)

$$\phi_i = -4G_S \langle\!\langle \bar{q}_i q_i \rangle\!\rangle$$

➤ diquark gaps

$$\Delta_{k\gamma} = 2G_D \langle\!\langle \bar{q}_{i\alpha} i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} q_{j\beta}^C \rangle\!\rangle$$

1. NQ:
$$\Delta_{ud} = \Delta_{us} = \Delta_{ds} = 0$$
;
2. NQ-2SC: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$ (0< χ_{2SC} <1);
3. 2SC: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$;
4. uSC: $\Delta_{ud} \neq 0$, $\Delta_{us} \neq 0$, $\Delta_{ds} = 0$;
5. CFL: $\Delta_{ud} \neq 0$, $\Delta_{ds} \neq 0$, $\Delta_{us} \neq 0$;

Quark Matter Phase Diagram (NJL case)

Phase Transition to Quark Matter

Phase Transition to Quark Matter

- ► NJL model for Quark Matter: in 2SC phase with scalar diquark (coupling $\eta_D = G_D/G_S$) and isoscalar vector (coupling $\eta_V = G_V/G_S$) mean fields
- Phase transition removes simultaneously the problems with DU constraint (left) and Flow constraint (right) for the hadronic DBHF EoS.

Phase Transition to Quark Matter

- ► NJL model for Quark Matter: in 2SC phase with scalar diquark (coupling $\eta_D = G_D/G_S$) and isoscalar vector (coupling $\eta_V = G_V/G_S$) mean fields
- ► More massive hybrid star configurations with increasing η_V (left) and fullfillment of the gravitational binding constraint (right)
- ►> DBHF-NJL hybrid EoS fulfills all constraints

Phase diagram, symmetric matter

Summary

- ➤ High density EoS testing scheme
 - \star set of constraints from HIC flow and new astrophysical observations
 - ★ complementary tests for $E_0(n)$ and $E_S(n)$
- ➤ Present-day conclusions (June 1, 2006 'Kindertag')
 - ★ "soft" $E_S(n)$ (NS cooling, direct Urca)
 - $\star \beta^2 E_S(n)$ shows universal behaviour
 - \star "soft" $E_0(n)$ at intermediate densities (flow data)
 - \star "stiff" $E_0(n)$ at high densities (maximum masses)
 - \star phase transition to quark matter can solve problems with hadronic EoS
 - * phase diagram for CBM: very weak 1st order transition, early onset!
- ➤ Outlook
 - * implementation of new astrophysical data (e.g. NS moment of inertia)
 - $\star\,$ discussion of hyperons and hadronic resonances
 - ★ correlations beyond mean-field: effects on phase transition

Collaborators

- Scheme Development: D. Blaschke, H. Grigorian, T. Klähn, G. Röpke
- ► Equations of State
- NL ρ , NL $\rho\delta$ T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, H.H. Wolter
Nucl. Phys. A732, 24-48 (2004)DBHFE.N.E. van Dalen, C. Fuchs, A. Faessler
Nucl. Phys. A744, 227-248 (2004)DD, D 3 C, DD-FS. Typel
Phys. Rev. C71, 064301 (2005)KVR, KVORE.E Kolomeitsev, D.N. Voskresensky
Nucl. Phys. A759, 373 (2005)NJLF. Sandin
Phys. Rev. D72, 065020 (2005)
- ➤ Astrophysical Expertise: M.C. Miller, J. Trümper, A. Ho, F. Weber
- ➤ arXiv:nucl-th/0602038 (submitted to Phys. Rev. C)
- Supported by
 - * DFG, BMBF, Helmholtz Gemeinschaft VH-VI-041 (Germany)
 - * US DoE, NSF, Research Corporation, Goddard Space Flight Center (USA)

Advertisement

Virtual Institute of the Helmholtz–Association Dense Hadronic Matter and QCD Phase Transition

http://theory.gsi.de/Vir-Institute/

http://snns.in2p3.fr/compstar/

Invitation

DIAS-TH: Dubna International Advanced School of Theoretical Physics

Helmholtz International Summer School

Dense Matter

Heavy Ion Collisions and Astrophysics

Bogoliubov Laboratory of Theoretical Physics JINR, Dubna, Russia, August 21 – September 1, 2006

OPICS:

Hadrons in the Medium Equation of State and Phase Transition Hadron Production in Heavy-Ion Collisions Color Superconductivity and sQGP Dense Matter in Compact Stars

UPPORTED BY:

Helmholtz Association Helmholtz Centers DESY and GSI

SI

ORGANIZERS:

J. Wambach (GSI, TU Darmstadt) D. Blaschke (JINR, GSI)

LOCAL ORGANYZERS:

- A. Soria (JINR)
- J. Schmelzer (U Rostock & JINR)
- . V. Zharavlev (JINR)
- V. Skokov (sc. secretary, JINR)
- V. Novikova (JINR)

CONTACT ADDRESS: FAX: +7-49621-65084 E-mail: dm2006@theor.jinr.ru WWW: http://theor.jinr.ru/~dm2006

Information and Registration:

http://theor.jinr.ru/~dm2006/