

Claudia Ratti

ECT*, Trento, ITALY and Technical University, Munich, GERMANY

In collaboration with Simon Rößner, Michael A. Thaler and Wolfram Weise

Introduction

- QCD has a rich phase structure
- Many challenging items:
 - order of the phase transition
 - critical point
 - deconfinement and chiral symmetry
 - \rightarrow colour superconductivity at high μ

Status of lattice QCD thermodynamics:

- precise data available in the pure gauge sector
- \blacksquare quarks easily introduced at $\mu = 0$
- first lattice data at finite (small) µ (F. Karsch, Z. Fodor, S. Katz, P. de Forcrand, O. Philipsen, M. D'Elia, M. P. Lombardo).

Starting point: three-flavour NJL model in temporal background gauge field

Starting point: three-flavour NJL model in temporal background gauge field

Starting point: three-flavour NJL model in temporal background gauge field

Starting point: three-flavour NJL model in temporal background gauge field

Coupling between Polyakov loop and quarks uniquely determined by covariant derivative D_{μ} . We recall that:

$$\Phi = \frac{1}{N_c} \operatorname{Tr} \left[\mathcal{P} \exp \left(i \int_0^\beta A_4 d\tau \right) \right], \qquad A^0 = -iA_4.$$

Parameters: m_u , m_s , G, K, Λ fixed in the hadronic sector.

 $N_f = 2 + 1$

Parameters			
Λ [GeV]	0.6023		
$G\Lambda^2$	3.67		
$K\Lambda^5$	24.72		
m_u [MeV]	5.5		
m_s [MeV]	140.7		

Physical quant	ties
f_{π} [MeV]	92.4
$ig \langlear{\psi}\psi angle_{u,d}ig ^{1/3}$ [MeV]	241.9
$ \langlear{\psi}\psi angle_{s} ^{1/3}$ [MeV]	257.7
m_{π} [MeV]	139.3
m_K [MeV]	497.7

Polyakov loop potential

R. Pisarski (2000)

8

• The Polyakov loop is the order parameter related to the $Z(N_c)$ symmetry

$$\frac{V(\Phi,T)}{T^4} = -\frac{b_2(T)}{2}\Phi^*\Phi - \frac{b_3}{6}\left(\Phi^3 + (\Phi^*)^3\right) + \frac{b_4}{4}\left(\Phi^*\Phi\right)^2$$

with

Fit of Pure Gauge QCD lattice data

- Minimization of $V(\Phi, T)$: Polyakov loop behaviour as a function of T
- Comparison with lattice data from
 Kaczmarek *et al.* PLB 543 (2002)

p(*T*) = −*V*(Φ(*T*), *T*) *s*(*T*) = dp/dT = −dV(Φ(*T*),*T*)/dT *ϵ*(*T*) = T dp/dT − p = Ts(*T*) − p(*T*)
Comparison with lattice data from

Boyd et al. NPB 469 (1996)

PNJL model at finite temperature and chemical potential

The thermodynamic potential of the system is:

$$\Omega(T,\mu) = V(\Phi,T) + \frac{\sigma_{u,d}^2}{2G} + \frac{\sigma_s^2}{4G} - \frac{K}{4G^3} \sigma_{u,d}^2 \sigma_s - 2\sum_f T \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \left\{ \mathrm{Tr}_c \ln \left[1 + \mathbf{L} \,\mathrm{e}^{-(E_{p,f} - \mu_f)/T} \right] + \mathrm{Tr}_c \ln \left[1 + \mathbf{L}^\dagger \,\mathrm{e}^{-(E_{p,f} + \mu_f)/T} \right] + 3\frac{E_{p,f}}{T} \theta \left(\Lambda^2 - \vec{p}^{-2} \right) \right\}.$$

with
$$E_{p,f} = \sqrt{p^2 + M_f^2}$$
 and $\operatorname{Tr}_c L = \Phi$, $\operatorname{Tr}_c L^{\dagger} = \Phi^*$.

Interaction with chiral condensate: quarks develop a constituent mass:

$$M_i = m_i - \langle \sigma_i \rangle - \frac{K}{4G^2} \langle \sigma_j \rangle \langle \sigma_k \rangle = m_i - 2G \langle \bar{\psi}_i \psi_i \rangle + K \langle \bar{\psi}_j \psi_j \rangle \langle \bar{\psi}_k \psi_k \rangle \quad i \neq j \neq k$$

Final form for Ω

High temperature limit: $\Phi \to 1, \, \Phi^* \to 1$ We re-obtain the standard NJL formula:

$$\ln \left[1 + 3\Phi e^{-(E_p - \mu)/T} + 3\Phi^* e^{-2(E_p - \mu)/T} + e^{-3(E_p - \mu)/T} \right]$$
$$\downarrow \quad T \to \infty$$
$$\ln \left[1 + e^{-(E_p - \mu)/T} \right]^3 = 3\ln \left[1 + e^{-(E_p - \mu)/T} \right]$$

Confinement and chiral symmetry breaking: chiral limit ($m_u = 0$)

$$T_c\simeq 270~{
m MeV}$$
 in pure gauge \Downarrow $T_c\simeq 210~{
m MeV}$ with quarks

lacksimScaled pressure as a function of T/T_c

$$\frac{p(T, \mu = 0)}{T^4} = -\frac{\Omega(T, \mu = 0)}{T^4}$$

 Comparison with lattice data from CP-PACS collaboration (2001)

Finite μ predictions: pressure difference

igoplus Scaled pressure difference as a function of T/T_c

$$\frac{\Delta p\left(T,\mu\right)}{T^{4}} = \frac{p\left(T,\mu\right) - p\left(T,\mu=0\right)}{T^{4}}$$

Scaled pressure difference as a function of the temperature at different values of the chemical potential, compared to the corresponding lattice data taken from Allton *et al.*, PRD 68 (2003). PNJL model results from: C.R., M. A. Thaler and W. Weise, PRD 73 (2006).

Finite μ predictions: quark number density

igoplus Scaled quark number density as a function of T/T_c

$$\frac{n_{q}\left(T,\mu\right)}{T^{3}} = -\frac{1}{T^{3}}\frac{\partial\Omega\left(T,\mu\right)}{\partial\mu}$$

Scaled quark number density as a function of the temperature at different values of the chemical potential, compared to the corresponding lattice data taken from Allton *et al.*, PRD 68 (2003). PNJL model results from: C.R., M. A. Thaler and W. Weise, PRD 73 (2006).

Finite μ results in the standard NJL model

• Comparison between PNJL and standard NJL model results at finite μ

- NJL model alone fails in reproducing lattice data
- Incorporation of confinement crucial to reproduce lattice results

Therm. fit data from Andronic *et al.* (2005) Lattice data from Allton *et al.* (2002)

First order transition at large chemical potential!

C. R., S. Rößner, W. Weise, in preparation

Phase diagram at large μ (preliminary)

Inclusion of diquark condensation does not seem to affect the critical point position

Finite μ predictions: pressure difference ($\mu_s = 0$)

• Scaled pressure difference as a function of T/T_c

$$\frac{\Delta p(T,\mu)}{T^4} = \frac{p(T,\mu) - p(T,\mu=0)}{T^4}$$

Scaled pressure difference as a function of the temperature at different values of the chemical potential, compared to the corresponding lattice data taken from Z. Fodor *et al.*, PLB 568 (2003).

Finite μ predictions: quark number density ($\mu_s = 0$)

• Scaled quark number density as a function of T/T_c

Scaled quark number density as a function of the temperature at different values of the chemical potential, compared to the corresponding lattice data taken from Z. Fodor *et al.*, PLB 568 (2003).

First order phase transition for three massless flavours ${\rm at}\ \mu=0$

	Λ [GeV]	$G\Lambda^2$	$K\Lambda^5$
set I	0.6023	3.072	40.00
set II	0.6023	3.67	24.72
set III	0.6023	4.2426	10.00

't Hooft six-fermion interaction responsible

for first-order phase transition!

Conclusions

- The standard NJL model fails in reproducing QCD thermodynamics
- PNJL model as a minimal synthesis of confinement and chiral symmetry breaking
- A description of QCD thermodynamics with our simple model works very well
- $N_f = 2$ $\rightarrow \mu = 0$
 - $\rightarrow \mu \neq 0$

Outlook

• $N_f = 2 + 1$

• $N_f = 3$

- Exploration of the phase diagram and its quark mass dependence for $N_f = 2+1$ and $N_f = 3$
- Improvement of Polyakov loop potential
- Improvement of approximation: going beyond mean field approximation

Improving the Polyakov-loop potential

Present Polyakov loop potential:

$$\frac{V(\Phi,T)}{T^4} = -\frac{b_2(T)}{2}\Phi^*\Phi - \frac{b_3}{6}\left(\Phi^3 + {\Phi^*}^3\right) + \frac{b_4}{4}\left(\Phi^*\Phi\right)^2$$

✤ We IMPOSED (by proper parameter choice) that

 $\Phi \to 1$ for $T \to \infty$ in pure gauge

 \bullet Nothing prevents Φ from going above 1 in the system of quarks and gluons

The potential can constraint the Polyakov loop to stay always below 1

$$\frac{V(\Phi,T)}{T^4} = -\frac{b_2(T)}{2}\Phi^2 - b_4\left(\frac{T_0}{T}\right)^3 \ln[(-(-1+\Phi)^3)(1+3\Phi)]$$

Improving the Polyakov-loop potential (II)

We can do better than this: the potential can constrain the Polyakov loop to stay always below 1

$$\frac{V(\Phi,T)}{T^4} = -\frac{b_2(T)}{2}\Phi^2 - b_4\left(\frac{T_0}{T}\right)^3 \ln[(-(-1+\Phi)^3)(1+3\Phi)]$$

Quark mass dipendence

Finite μ results

Fixing the parameters

In the Polyakov loop potential there are 7 parameters:

 $a_0, a_1, a_2, a_3, b_3, b_4, T_0$ but only 3 are free

There are 4 constraints:

- \blacksquare T_0 is fixed to 270 MeV, the known critical temperature for the pure gauge system
- $woheadrightarrow ext{The Polyakov loop must tend to 1 as } T
 ightarrow \infty$
- $\Rightarrow p(T) = -V(\Phi(T), T)$ tends to the ideal gas limit as $T \to \infty$
- woheadrightarrow At $T=T_0$ the absolute minimum of $V(\Phi,T)$ must jump from $\Phi=0$ to a finite Φ

The remaining three parameters are fixed to reproduce the pure gauge lattice data

Parameter fixing

We have three free parameters in the model: m_0, Λ, G . They are fixed by:

• The pion decay constant f_{π} is evaluated in the NJL model through the following relation:

$$f_{\pi}^{2} = 4m^{2} I_{\Lambda}^{(1)}(m) \quad \text{where} \quad I_{\Lambda}^{(1)}(m) = -iN_{c} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{\theta \left(\Lambda^{2} - \vec{p}^{2}\right)}{\left(p^{2} - m^{2} + i\epsilon\right)^{2}}.$$

The empirical value is $f_{\pi} = 92.4$ MeV.

The quark condensate becomes

$$\left\langle \bar{\psi}_{u}\psi_{u}\right\rangle = -4mI_{\Lambda}^{(0)}(m) \quad \text{with} \quad I_{\Lambda}^{(0)}(m) = iN_{c}\int \frac{d^{4}p}{(2\pi)^{4}}\frac{\theta\left(\Lambda^{2}-\vec{p}^{2}\right)}{p^{2}-m^{2}+i\epsilon}.$$

Its "empirical" value derived from QCD sum rules is

$$\langle \bar{\psi}_u \psi_u \rangle^{1/3} \simeq \langle \bar{\psi}_d \psi_d \rangle^{1/3} = -(240 \pm 20) \text{ MeV}.$$

The current quark mass m_0 is fixed from the Gell-Mann, Oakes, Renner (GMOR) relation:

$$m_{\pi}^2 = \frac{-m_0 \left\langle \bar{\psi}\psi \right\rangle}{f_{\pi}^2}.$$

Thermodynamic potential

The final form of the thermodynamic potential is

$$\begin{aligned} \Omega\left(T,\mu,\sigma,\Phi,\Phi^{*}\right) &= V\left(\Phi,\Phi^{*},T\right) + \frac{\sigma^{2}}{2G} \\ -2N_{c}N_{f}\int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \bigg\{ E_{p} + \frac{T}{3} \left[\ln\left[1 + 3\left(\Phi + \Phi^{*}\mathrm{e}^{-(E_{p}-\mu)/T}\right)\mathrm{e}^{-(E_{p}-\mu)/T} + \mathrm{e}^{-3(E_{p}-\mu)/T}\right] \right. \\ &+ \left. \ln\left[1 + 3\left(\Phi^{*} + \Phi\mathrm{e}^{-(E_{p}+\mu)/T}\right)\mathrm{e}^{-(E_{p}+\mu)/T} + \mathrm{e}^{-3(E_{p}+\mu)/T}\right] \right] \bigg\} \end{aligned}$$

with
$$E_p = \sqrt{p^2 + m^2} = \sqrt{p^2 + (m_0 - \sigma)^2}.$$

Field equations:

$$\frac{\partial \Omega \left(T, \mu, \sigma, \Phi, \Phi^*\right)}{\partial \sigma} = 0, \qquad \frac{\partial \Omega \left(T, \mu, \sigma, \Phi, \Phi^*\right)}{\partial \Phi} = 0, \qquad \frac{\partial \Omega \left(T, \mu, \sigma, \Phi, \Phi^*\right)}{\partial \Phi^*} = 0$$

Finite μ results in the standard NJL model

• Comparison between PNJL and standard NJL model results at finite μ

- NJL model alone fails in reproducing lattice data
- Incorporation of confinement crucial to reproduce lattice results

$$N_f = 2 + 1$$

Parameters				
Λ [GeV]	0.6023			
$G\Lambda^2$	3.67			
$K\Lambda^5$	24.72			
$m_{0u,d}$ [MeV]	5.5			
m_{0s} [MeV]	140.7			

Physical quantities		
f_{π} [MeV]	92.4	
$ \langlear{\psi}\psi angle_{u,d} ^{1/3}$ [MeV]	241.9	
$ \langlear{\psi}\psi angle_{s} ^{1/3}$ [MeV]	257.7	
m_{π} [MeV]	139.3	
m_K [MeV]	497.7	