Compressed Baryonic Matter

at GSI and FAIR with CBM and HADES

Joachim Stroth for the CBM and HADES collaborations Bad Honnef, 5. Dezember 2015

the C.B.M. mission

Explore Compressed Baryonic Matter with rare and penetrating probes:

- EOS of (baryon) dense and hot QCD matter
- Search for exotic quark matter phases and rare strange matter
- Study the limit of hadronic existence

Dedicated experiment facility at FAIR with next generation high-rate fix-target experiment CBM:

- HI and p/d beams (π beams at SIS18)
- Flexible detector setup to optimally address all relevant observables
- Use high-acceptance HADES spectrometer for important reference measurements (coldmatter physics)

December 5, 2015

CBM and HADES, Bad Honnef

experimental approach to QCD phases

LQCD: Z. Fodor et al., hep-lat/0402006 Condensate: B.J. Schaefer and J. Wambach, private communication HADES data: M. Lorenz et al., Nucl. Phys. A (2014) QM14 A. Andronic et al., Nucl. Phys. A 837 (2010) 65 J. Cleymans et al., Phys. Rev. C 60 (1999) 054908

conjectured QCD phase structure

Recent Conception by Hatsuda and Fukushima

C.B.M.

Cloudy Bag Model (for the nucleon)

Chirally restored valence quarks surrounded by a cloud of virtual pions (G. Brown and M. Rho, 1979)

> R_{bag} = 0.82 fm > bags touch at $\rho \approx 3 \rho_0$

An old model but very instrumental in planning experiments (A.W. Thomas, MENU 2013)

Lattice-QCD vacuum action on the presence of static quarks!

http://www.physics.adelaide.edu.au/theory/staff/leinweber

$\circ \quad \mbox{Not much guidance yet from IQCD} \\ \mbox{at finite } \mu_{\mbox{\tiny B}}!$

Nuclear matter from in-medium Chiral Perturbation Theory!

J.W. Holt, M. Rho, W. Weise arXiv1411.6681 (Phys. Rep. 2015)

- Provides prediction for chiral order parameter a.f.o. baryon density
- Possibility to connect CBM measurements to NScore matter EOS

conjectured QCD phase structure

effects of the cloud in HADES data

(p)n+p collisions

- strong overshoot towards larger invariant masses
- Can be explained by "emission from the internal charged pion line" (off-shell π⁻+π⁺ τρ)

pion p/C (PE) collisions

- o preliminary, run 2014
- Cocktail constrained by exclusive measurement of hadronic final states (no free parameter)
- PWA (Bonn/Gatchina framework) analysis including electron and crystal barrel data

low-mass dilepton pairs

S. Endres et al. [arXiv:1412.1965,arXiv:1505.06131]

Thermal dilepton spectral distributions can be used as

- o chronometer,
- o thermometer and
- o bar(y)ometer

of the dense phase (penetrating probe).

Model: coarse grained UrQMD with Rapp/Wambach thermal emission rates.

strangeness production

The "story" of the phi:

• supposed to be "special" because of the <u>s</u> content (OZI).

ϕ -Meson Production as a Probe of the Quark-Gluon Plasma

Asher Shor^(a)

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, and Department of Physics, University of California, Los Angeles, California 90024 (Received 24 August 1984)

The formation of the quark-gluon plasma in relativistic nuclear collisions may be determined by enhanced production of ϕ mesons. This enhancement would result from the absence of the Okubo-Zweig-Iizuka suppression which inhibits ϕ production in ordinary p-p and π -p collisions, and from a large abundance of strange quarks in the plasma. The ϕ will not rescatter significantly in the subsequent expanding hadronic phase and would thereby retain information on the conditions of the hot plasma.

but ...

- DISTO: phi production in p+p 10 times above OZI expectation! (PRL 81, 21 (1998))
- ANKE: in-medium cross section 14-21 mb (almost like pion)! (arXiv:1201.3517v1)
- HADES: production in HI as if it has no strangeness content! (arXiv:1010.1675)

Excitation function of multi-strange baryons

• Important observable hardly addressed at SIS/AGS energies

Multi-strange hypernuclei

 \circ Make use of the high rate capability and on-line data reduction

A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Phys. Lett. B697 (2011) 203

experiments exploring dense QCD matter

Rare and penetrating probes have not yet been systematically studied for exploring compressed baryonic matter!

CBM and HADES, Bad Honnef

C.B.M. strategy

until 2018

- o production readiness for all MSV relevant detector systems
- start of mass production for STS, TOF and RICH
- o completion of HADES lead glass calorimeter

2018-2020 (phase 0)

- o continue mass production of CBM detector components
- HADES experimental campaign at SIS18 (π , HI beam)
- operation of CBM pre-series detectors* in STAR, BM@N and HADES

2021 on (phase 1)

- Installation and commissioning of CBM start version to be ready for day-one FAIR experiment with SIS100 beam and CBM start version
- Completion of installation of CBM/MUCH, HADES and start of comprehensive research program

* provided core invest money is available in the running BMBF funding period

CBM Technical Design Reports

Ongoing R&D: Development of CMOS sensors (MVD), read-out ASIC for STS, and DAQ/FLES

R&D achievements

60 ps time-resolution for MIPS with **MRPC** modules with adjustable granularity

- Differential strip readout with varying strip length (4 30 cm)
- Adapted customized electronics (PADI, GET4)
- $\circ~$ High rate capability by usage of doped glass with high conductivity (10^{11} \,\Omega cm)

CBM-TOF collaboration, Journal of Instrumental

Low-mas, vacuum-compatible pixel sensor integration

- $\,\circ\,$ double sided integration on CVD material below 0.3 % X_0 in total
- \circ 50 μ m thinned **MAPS** with enhanced radiation tolerance (IPHC)

CBM-MVD collaboration: Nucl.Instrum.Meth. A732 (2013) 515-518

Wavelength shifting film enhanced UV photo efficiency

- $\circ~$ Film applied by dip-coating method
- 20 % increase in mean detected photon per ring

CBM-RICH/GSI collaboration: Nucl. Instrum. Meth. A 783 (2015) 43

High-rate modular muon detection system

- $\,\circ\,$ Design based on instrumented absorbers completed
- $\,\circ\,\,$ Large area prototype GEM detectors built and successfully tested

CBM-MUCH collaboration: S. Achmad et al., Nucl. Instrum. Meth. A775 (2014) 139-147

Background picture: STS module assembly with double-sided strip sensor, ultra-thin flex cables and front-end card.

just finished at CERN SPS

Full system test of CBM TOF system:

- Several MRPC modules under test: pad, multi-strip from 16 - 128 strips
- o 1074 channels
- Full DAQ chain with PADI, FPGA TDC, TRB
- Diamond start detector
- Pb+Pb collisions at at SPS

Beijing-Bucharest-GSI-Heidelberg-Wuhan Team

pre-series CBM detectors

CBM MRPC's for STAR barrel TOF

- Extends STAR's PID capability to larger rapidity coverage
- Modules are produced by CCNU, ISTC and Tsinghua U. (Wuhan and Beijing)
- Provides large-scale integration test
- $\circ\,$ Gain experience in MRPC operation

MAPMT UV photon detector for HADES

- Replaces aging solid CsI based UV photon detector
- $\,\circ\,$ Improves rate capability
- Joint development CBM and HADES
- $\,\circ\,$ Leaves the rest of the HADES-RICH untouched

allows young members of the CBM collaboration to participate in experiments before 2022

German participation in C.B.M.

	HADES	MVD	STS	RICH	TRD	TOF	DAQ/DCS	FLES	PSD
ZIB Berlin									
GSI Darmstadt									
TU Darmstadt									
Univ. Frankfurt									
Univ. Giessen									
Univ. Heidelberg									
КІТ									
TU München									
Univ. Münster									
Univ. Tübingen									
Univ. Wuppertal									

Konrad-Zuse-Zentrum Berlin GSI Darmstadt: Technische Univ. Darmstadt: Univ. Frankfurt:	Prof. Reinefeld Prof. Senger, Dr. Schmidt, Dr. Sturm (FAIR: J. Eschke, W.F.J. Müller) JProf. Galatyuk Prof. Blume, Prof Kebschull, Prof. Kisel, Prof. Lindenstruth, Prof. Stroth, Prof. Toia
Univ. Giessen:	Prof. Höhne, Prof.
Univ. Heidelberg:	Prof. Herrmann, Prof. Fischer
Karlsruhe Institute for Technology:	Prof. Becker
Technische Univ. München:	Prof. Fabbietti
Univ. Tübingen	Prof. Schmidt
Univ. Wuppertal:	Prof. Kampert

Costs and funding CBM day-1 version

back up

HADES run scenario at SIS18

Time line

- Upgrade program in 2016-2017 (no operation)
- Likely beam available from 2018 on (summer)
- Anticipated improved conditions
 - radiation protection
 - new slow extraction
 - improved intensities

Assume three long campaigns

i.e.

- π +PE/IH₂: baryon em transition form factors, baryonic resonances with strangeness
- p+A: strangeness/vector mesons in medium
- A+A: medium system at maximal energy

FAIR project plan

