ALICE Resultate und Upgrade

Yvonne Pachmayer, Universität Heidelberg

ALICE Apparatus

German Contributions

- TPC: H. Appelshäuser (U Frankfurt, PL), C. Garabatos (GSI, DPL), C. Lippmann (GSI, TC)
- TRD: J. Stachel (U Heidelberg, PL), J. Wessels (U Münster, DPL), J. Mercado (U Heidelberg, TC)
- HLT: V. Lindenstruth (U Frankfurt, PL), M. Krzewicki (U Frankfurt, DPL/TC), T. Alt (U Frankfurt, DTC)
- Collaboration Board Chair: P. Braun-Munzinger (GSI/EMMI)
- Deputy Spokesperson: J. Wessels (U Münster)

BMBF Forschungsschwerpunkt 201-ALICE:

- GSI/EMMI
- Universität Heidelberg
- Universität Frankfurt
- Universität Münster
- Universität Tübingen
- Technische Universität München
- Universität Bonn (associate, transfer to full membership in December)
- FIAS Frankfurt
- FH Worms, FH Köln

Detector Performance

βγ

KHuK Jahrestagung 2015

Long Shutdown 1

LS 1 installation

- 5 TRD supermodules
- TRD read-out upgrade DDL → DDL2 (2.125 Gbit/s → 4 Gbit/s)
- TPC: gas mixture changed to Ar:C0₂
- HLT
 - New farm

Hardware acceleration: FPGA+ GPU KHuK Jahrestagung 2015

Impact on Physics Results

- Physics Working Group Conveners (2/16): R. Averbeck (GSI), K. Reygers (U Heidelberg)
- **Editorial Board Chair: H. Oeschler until May 2014 (U Heidelberg)**
- Editorial Board Member: Y. Pachmayer (U Heidelberg)
- Conference Committee Member: C. Klein-Bösing (U Münster)
- Active membership in paper committees and internal review committees
- Supported by the Tier2 center (GSI)
- Publications in 2014/15 published and submitted: 58
 - Pb-Pb: 31; p-Pb: 18
 - Phys. Lett. B: 11, Nature: 1
 - Citations: 1508 (3 Dec 2015)

J/ψ in Pb-Pb Collisions

ALICE: Phys. Lett. B 734 (2014) 314 PHENIX: Phys. Rev. Lett. 98 (2007) 232301; Phys. Rev. C 84 (2011) 054912; Phys. Rev. C (2005) 049901

KHuK Jahrestagung 2015

Yvonne Pachmayer (University of Heidelberg)

Braun-Munzinger, Stachel PLB 490 (2000)

Thews et al. PRC 62 (2000)

J/ψ in Pb-Pb Collisions

KHuK Jahrestagung 2015

J/ψ in p-Pb Collisions

KHuK Jahrestagung 2015

J/ψ in p-Pb and Pb-Pb Collisions

Cold nuclear matter effects + hot nuclear matter effects (related to the Quark-Gluon Plasma) Elementary collision No nuclear matter effects Cold nuclear matter effects - without Quark-Gluon Plasma

Mid-rapidity

Backward rapidity & Forward rapidity

KHuK Jahrestagung 2015

J/ψ in p-Pb Collisions

Cold nuclear matter effects + hot nuclear matter effects (related to the Quark-Gluon Plasma)

Elementary collision No nuclear matter effects

Cold nuclear matter effects - without Quark-Gluon Plasma

Mid-rapidity p --- --- Pb

Forward rapidity p --- --- Pb

Heavy-Flavour Production in p-Pb and Pb-Pb Collisions

Energy loss depends on

- Properties of the medium (gluon densities, size)
- Properties of the probe (color charge, mass)
 - Mass dependence: Gluon radiation is suppressed for angles θ < M_o/E_o

Expected behaviour: $\Delta E_g > \Delta E_{charm} > \Delta E_{beauty}$

→ R_{AA} (light hadrons) < R_{AA} (D) < R_{AA} (B)

- → R_{AA} (π) and R_{AA} (D) compatible within uncertainties
- → Suppression in Pb-Pb is a final state effect

Heavy-Flavour Production in p-Pb and Pb-Pb Collisions

ALICE: arXiv:1509.07491

Energy loss depends on

- Properties of the medium (gluon densities, size)
- Properties of the probe (color charge, mass)
 - Mass dependence: Gluon radiation is suppressed for angles θ < M_o/E_o

Expected behaviour: $\Delta E_g > \Delta E_{charm} > \Delta E_{beauty}$

→ R_{AA} (light hadrons) < R_{AA} (D) < R_{AA} (B)

→ Suppression in Pb-Pb is a final state effect

→ Profit from full TRD in Run2

Direct Photons in Pb-Pb

2.6 σ excess in low p_{τ} in 0-20% central

T = 304 ± 11 ± 40 MeV (30% larger than at RHIC)

Higher initial energy or stronger radial flow

Light (anti)(hyper)nuclei production in Pb-Pb Collisions

ALICE: CERN Courier, September 2015 Braun-Munzinger, Stachel J Phys. G 28 (2002) Andronic et al. Phys. Lett. B 697 (2011)

Yields can be interpreted in terms of statistical (thermal) model with a common chemical freeze-out temperature: T_{chem} = 156 ± 2 MeV

- Also true for loosely bound deuterons and hypertritons
- Upper limits for An bound state and H-Dibaryon are significantly lower than all predicting models (thermal and coalescence)

Run 2: pp 13 TeV data

- Minimum bias, high luminosity running with rare triggers (muon, high multiplicity)
- **First results**
 - Charged-particle density distribution
 - Charged-particle yields vs. p_{τ}

KHuK Jahrestagung 2015

ALI-PUB-102506

Data, systematic uncertainties

Data, combined uncertainties

10 p_{τ} (GeV/c)

Run 2 Near-term measurements

Data sets

- Pb-Pb at √s_{NN} = 5.02 TeV ~1 nb⁻¹
- 1 p-Pb run, pp reference
- Physics objectives
 - Improved precision and differential studies
 - Transport properties of the medium in different classes of events
 - 'Collectivity' and coherence in large and small systems
 - Jet quenching within QGP
 - Heavy-flavour suppression and flow
 - Quarkonia re-combination and flow
 - Hard processes vs. event 'activity' and 'geometry'
 - Photo-production of particles

Heavy Ions 2015

pp reference run at \sqrt{s} = 5.02 TeV

- Precious reference data for Pb-Pb (2015) and p-Pb (2013)
- High ALICE data taking and operational efficiency
- Pb-Pb √s_{NN} = 5.02 TeV
 - Design luminosity reached
 - 1000 Hz/b → 16 GB/s readout,
 6 GB/s on disk after HLT compression

- LS 2: ALICE Upgrade
- Run 3 + Run 4:
 - Pb-Pb >10 nb⁻¹ at $\sqrt{s_{NN}} \sim 5.5$ TeV
 - LHC target luminosity: $6 \times 10^{27} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow \text{R} = 50 \text{ kHz}$

ALICE Physics Goals for Run3 and Run4

→ Complementarity in comparison to ATLAS and CMS

ALICE Upgrade

KHuK Jahrestagung 2015

KHuK Jahrestagung 2015

Upgrade Time Projection Chamber

Current TPC

- Gating grid of readout of MWPCs closed to avoid ion feedback (IFB) and keep space charge at tolerable levels
- Effective dead time ~280 µs, maximum effective readout rate 3.5 kHz

Upgrade TPC

- Continuous readout with Gas Electron Multiplier (GEM)
 - GEM has advantages in:
 - Reduction of ion backflow (IBF)
 - High rate capability
 - No ion tail
 - Requirement
 - IBF < 1% at Gain = 2000</p>
 - dE/dx resolution from Run 1,2 must be preserved
 - Stable operation under LHC condition
 - New electronics (neg. polarity)
 - Novel calibration and online reconstruction schemes

Baseline solution: 4 GEM setup

IBF and resolution studies

- 0.6-0.8% IBF at σ(5.9keV) ~ 12%
- IBF quantitatively well described by simulations

Prototype test beam at PS (CERN)

- Good e/π separation
- $\sigma_{dE/dx}$ /<d*E*/d*x*> ~ 10.5% comparable to current TPC resolution (~9.5% with IROC)

Momentum resolution – performance of current TPC preserved

KHuK Jahrestagung 2015

ALICE O² Project

The Upgrade of the ALICE Online and Offline Computing

- **50.000 collisions per second, each ~20 MByte**
 - \rightarrow ~1.1 TByte/s data input
- Detectors in continuous & triggered read-out mode
- Data reduction by on-line reconstruction and compression
- Storage of only reconstruction results, discard raw data
- Combined DAQ/HLT/off-line farm (O2)
- Subsequent reconstruction passes for physics on farm

Detectors	Input to On-line System (GByte/s)	Peak Output to Local Data Storage (GByte/s)	Avg. Output to Computing Center (GByte/s)
TPC	1000	50.	8.
TRD	81.5	10.	1.6
ITS	40.	10.	1.6
Others	25.	12.5	2.
Total	1146.5	82.5	13.2

German Contributions to the Upgrade Project

TPC: H. Appelshäuser (U Frankfurt, PL), C. Garabatos (GSI, DPL), C. Lippmann (GSI, TC)

HLT Upgrade: V. Lindenstruth (U Frankfurt, PL), T. Kolleger (GSI, TC)

Involved groups:

- GSI/EMMI
- Universität Heidelberg
- Universität Frankfurt
- Universität Münster
- Universität Tübingen
- Technische Universität München
- Universität Bonn
- FH Worms

Contributions to the TPC Upgrade Project

- GEM frames
- Chamber assembly
- Electronics development
- Online calibration and reconstruction
- Integration, commissioning and testing

Status TPC Upgrade Project

- Full-size 4-GEM
- GEM foils test and QA
- Electronics tests
- Engineering Design Review
 - Chamber assembly
 - HV
 - Etc.

Conclusion

- Rich physics harvest of LHC Run 1
- Smooth start into Run 2
- Exiting results to come -> stay tuned
- Major detector upgrade during LS2 to exploit the high collision rate expected for the LHC Run 3
- ALICE has a strong and unique program for precision QGP studies in Run 3
 - Focus on rare probes and their interaction with the QGP
 - Extending to the late 2020s

ALICE Upgrade and Physics Opportunities

KHuK Jahrestagung 2015

Back-Up

KHuK Jahrestagung 2015

Heavy-Flavour Production in p-Pb Event Activities in p-Pb

Self-normalised yield vs. multiplicity from two estimators

- Tracklets in SPD ($|\eta|$ <1) and backward (Pb-going) multiplicity in VOA (2.8< η <5.1)
- **•** Faster-than-linear increase with N_{ch} ($|\eta|$ <1)
- Linear increase in measured multiplicity with V0A estimator.

Consistent with mid-rapidity result in measured multiplicity interval KHuK Jahrestagung 2015 Yvonne Pachmayer (University of Heidelberg)

