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Aktuelle Entwicklungen in der Theorie: 
Ab initio Beschreibung der Kerne
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πN scattering 2π-exchange 
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long- and intermediate-range parts of the 3NF

Figure 2: The long-range part of the nuclear force is completely predicted by the chiral symmetry
of QCD and experimental information on the pion-nucleon system.

part of the interaction and thus maintains the analytic structure of the amplitude in the low-energy
domain. This feature is in contrast with the non-local momentum-space regulator employed in the
first-generation NN potentials of Refs. [47, 48] of the type

V (p⃗, p⃗ ′)→V reg(p⃗, p⃗ ′) =V (p⃗, p⃗ ′)exp
(

−
p2n+ p′2n

Λ2n

)

, n= 2,3 , (2.7)

where p⃗, p⃗ ′ are the initial and final momenta of the nucleons in the center of mass system (CMS),
which distorts the long-range part of the interaction. Another advantage of the regulator in Eq. (2.5)
is that it cuts off precisely the undesired short-range components of the pion exchange contributions
which cannot be meaningfully predicted in chiral EFT instead of their large-momentum parts as
does the non-local regulator in Eq. (2.7). This makes the additional spectral-function regularization
(SFR) [75] of the two-pion exchange components, which was used e.g. in Refs. [48, 76] to tame
the unphysically strong attraction at short distances at N2LO [41], obsolete. This is a particularly
welcome feature in view of the ongoing and upcoming 3NF studies, in which the implementation
of the SFR would be rather non-trivial. The insensitivity of the calculated NN observables to the
value of the exponent in Eq. (2.5) is demonstrated in [18]. For contact interactions, we used in
Refs. [18, 19] a non-local Gaussian regulator in momentum space with the cutoff set to Λ= 2/R.

2.3 Determination of the LECs

I am now in the position to specify the employed values of the various LECs and begin with
the long-range part of the potential due to exchange of pion(s). Here, the framework of chiral
EFT shows its full power by allowing one to predict the long-range part of the nuclear force in a
parameter-free way using the available experimental information on the pion-nucleon system and
exploiting the constraints due to the chiral symmetry of QCD as visualized schematically in Fig. 2.
At orders N2LO, N3LO and N4LO, one needs to specify the values of the order-Q2, order-Q3 and
order-Q4 πN LECs ci, di and ei, respectively. At N2LO and N3LO, we used in [18] the values
of c1 = −0.81, c2 = 3.28, c3 = −4.69, c4 = 3.40, d̄1 + d̄2 = 3.06, d̄3 = −3.27, d̄5 = 0.45 and
d̄14 − d̄15 = −5.65 from the order-Q3 fits to πN data in the physical region [77] and inside the
Mandelstam triangle [78]. Further, the LEC d18 is adjusted to reproduce the observed value of the
Goldberger-Treiman discrepancy. Here and in the following, the values of the LECs are given in
units of GeV−n. The bars over the LECs indicate that I am using the convention of Ref. [77] by
setting the dimensional regularization scale equal to the pion mass. At N4LO, we employ the values
from our order-Q4 fit to Karlsruhe-Helsinki partial-wave analysis of πN scattering [55], namely:
c1 =−0.75, c2 = 3.49, c3 =−4.77, c4 = 3.34, d̄1+ d̄2 = 6.21, d̄3 =−6.83, d̄5 = 0.78, d̄14− d̄15 =
−12.02, ē14 = 1.52 and ē17 =−0.37. These values are in a reasonable agreement with the ones of
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Long-range nuclear forces are completely 
determined by the χ-symmetry of QCD + 
experimental information on πN scattering
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πN scattering: from ChPT to Roy–Steiner equations Bastian Kubis and Jacobo Ruiz de Elvira
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Figure 6: Final errors bands for the πN phase shifts. The dashed lines indicate the central curves. Figure
taken from [37].

f 1+ and f 2+. We combine both effects by adding them in quadrature, leading to the results for the
imaginary parts plotted in Fig. 7.

For completeness we also show the results for the real parts, see Fig. 8. Apart from the S-wave
all partial waves are strongly dominated by the Born terms close to threshold, where they take a
large (but finite) value that would overshadow any structure in the remainder of the amplitude if
included in the plot. For this reason, the scale is cut off much earlier, focusing on the part of the
partial waves where the respective resonances occur. In general, we find that deviations from the
KH80 results are at a similar level as already observed for the imaginary parts, with error analysis
performed in the same way as in Fig. 7.
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Pion-nucleon Roy-Steiner equations
M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, PRL 115 (2015) 092301; arXiv:1510.06039 [hep-ph] 

Integral equations in the form of dispersion 
relations which incorporate constraints from 
analyticity, unitarity & crossing symmetry

Input: S-,P-waves at high energy, inelasticities, !
D- and higher waves + scatt. lengths from !
hadronic atoms

Output: reliable results for S-,P-waves with 
systematic uncertainties; subthreshold coef-
ficients, determination of the σ-term:

Summary

Pion–nucleon Roy–Steiner equations

• allow to determine low-energy πN scattering with precision
◃ obeying analyticity, unitarity, crossing symmetry
◃ new input on scattering lengths from hadronic atoms

• provide πN phase shifts with systematic uncertainties
• similarly: t-channel ππ → NN̄ spectral functions
• phenomenological determination of sigma term:

σπN = 59.1± 3.5MeV
• consistency check: Karlsruhe–Helsinki input leads to
Karlsruhe–Helsinki results

• chiral low energy constants obtained algebraically from
subtreshold coefficients

B. Kubis, Pion–nucleon scattering at low energies – p. 29

ChPT for πN, πN ➝ ππN with/without Δ(1232)
Siemens et al., PRC 89 (2014) 065211;  to appear

Baryon ChPT beyond the low-energy region
EE, J. Gegelia, U.-G. Meißner, D.-L. Yao, EPJ C75 (2015) 499

πN phase shifts from the RS equations

predicted in a parameter-free way
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Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

focus of intense research efforts…have been worked out 
Entem, Kaiser, Machleidt, Nosyk, PRC 91 (2015) 014002
EE, Krebs, Meißner, PRL 115 (2015) 122301

Why is it necessary/interesting to extend the χ-expansion of the NN potential to Q5?
— no additional parameters (except for 1 IB term) ➙ testing the theory (long-range physics)
— there is evidence that χ-expansion for the 3NF is not yet converged at Q4

— understanding fine details of the 3NF requires accurate and precise NN forces
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Figure 3: Chiral expansion of the np phase shifts for the cutoff R = 0.9fm in comparison with
NPWA [84] (solid dots) and the GWU single-energy np partial wave analysis [85] (open triangles).
Dotted (black), dashed (brown), dash-dotted (blue), dash-double-dotted (red) and solid (violet)
lines show the results at LO, NLO, N2LO, N3LO and N4LO, respectively.

Table 1: χ̃2/datum for the description of the Nijmegen np and pp phase shifts [84] for the cutoff
R= 0.9 fm. The numbers in the round brackets give the number of adjustable isospin-invariant con-
tact interactions at the corresponding order with the subscripts referring to the number of isospin-
breaking contact terms. Only those channels are included which have been used in the N3LO/N4LO
fits, namely the S-, P- and D-waves and the mixing angles ε1 and ε2.

Elab bin LO (2[2]) NLO (+7[0]) N2LO (+0[0]) N3LO (+15[0]) N4LO (+0[1])
neutron-proton phase shifts
0–100 360 31 4.5 0.7 0.3
0–200 480 63 21 0.7 0.3

proton-proton phase shifts
0–100 5750 102 15 0.8 0.3
0–200 9150 560 130 0.7 0.6

improved description of the phase shifts with increasing chiral order. It is particularly encouraging
to see a strong reduction in the χ̃2 when going from NLO (Q2) to N2LO (Q3) and from N3LO
(Q4) to N4LO (Q5), which originates entirely from the corresponding two-pion exchange (TPE)
components without invoking new parameters.6 These results constitute an important consistency
check of the theoretical approach and provide a beautiful illustration of its predictive power. In
particular, one observes a strong decrease in the value of χ̃2 per datum at N2LO which is solely due
to inclusion of the parameter-free order-Q3 TPE. Similarly, we find a significant decrease in χ̃2 per
datum at N4LO which, for the pp case, again emerges entirely from the predicted parameter-free

6Except for the np 1S0 partial wave, where one additional isospin-breaking contact interaction is included at N4LO.
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New state-of-the-art chiral NN potentials up to N4LO 

— improved UV regulator!
    maintains the analytic !
    structure of the amplitude!

— all LECs in the long-range!
    part are taken from πN scat-!
    tering, no fine tuning! !

— coupled with the novel!
    approach for uncertainty!
    quantification, provides !
    the tool for next-generation !
    precision ab initio studies

2 LECs + 7 LECs + 2 IB LECs + 15 LECs + 1 IB LEC

no new LECs

no new LECs

1 LEC (1S0)

3

TABLE III: �2/datum for the description of the Nijmegen neutron-proton and proton-proton phase shifts [25] as described in
the text at di↵erent orders in the chiral expansion for the cuto↵ R = 0.9 fm. Only those channels are included which have been
used in the N3LO/N4LO fits, namely the S-, P- and D-waves and the mixing angles ✏1 and ✏2.

Elab bin LO NLO N2LO N3LO N4LO

neutron-proton phase shifts

0–100 360 31 4.5 0.7 0.3

0–200 480 63 21 0.7 0.3

proton-proton phase shifts

0–100 5750 102 15 0.8 0.3

0–200 9150 560 130 0.7 0.6
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FIG. 1: Chiral expansion of the NN phase shifts in comparison with the NPWA [25] (solid dots) and the GWU single-energy
np partial wave analysis [58] (open triangles). Dotted, dashed, dashed-dotted, dashed-double-dotted and solid lines show the
results at LO, NLO, N2LO, N3LO and N4LO, respectively, calculated using the cuto↵ R = 0.9 fm. Only those partial wave are
shown which have been used in the fits at N3LO/N4LO.

Quality of the reproduction of the Nijmegen PWA („χ2datum“)

[Q0] [Q2] [Q3] [Q4] [Q5]

EE, Krebs, Meißner, EPJA 51 (2015) 53;  PRL 115 (2015) 122301

LO!
NLO!

N2LO!
N3LO!
N4LO
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Figure 8: Predictions for the np differential cross section dσ/dΩ, the analyzing power Ay, the
rotation parameter R, the polarization-transfer parameters Dt , Rt and At and the spin-correlation
parameters Cnn, Ckp, Cpp, Ckk, Azx and Azz at Elab = 143MeV calculated up to N4LO based on the
cutoff of R = 0.9fm. Data for the cross section are at Elab = 142.8MeV and taken from [92] and
for the analyzing power from [93]. For remaining notation see Fig. 6.

Using Eqs. (3.3) and (3.4) and adopting Q = Mπ/Λb, our predictions for AS at N4LO is AS =
0.8844± 0.0002 fm−1/2 while the accuracy for η is beyond the quoted figures. For the rd and Q,
our results are incomplete as we do not include relativistic corrections and meson-exchange current
contributions. The estimated size of these corrections is consistent with the deviation between our
values and the empirical numbers, see [18] for an extended discussion.

4. Beyond the two-nucleon system

Having developed the new generation of NN potentials up to N4LO and the novel approach
to uncertainty quantification, which has been validated in the NN system, we are well prepared to
test nuclear chiral EFT in heavier systems and to systematically analyze the role of the 3NF, which
has been the subject of intense experimental research at FZ Jülich, GANIL, KVI, RIKEN, TUNL
and other laboratories. This is the main goal of the recently formed Low Energy Nuclear Physics
International Collaboration (LENPIC). The numerical implementation of the 3NF regularized in
the same way as the NN potentials of Refs. [18, 19] is currently in progress so that no results
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A simple algorithm for estimating uncertainty from the truncation of the chiral expansion:
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proton-neutron scattering observables at Elab=143 MeV 

EE, Krebs, Meißner, EPJA 51 (2015) 53
estimated from the error !

plots Λb ~ 600 MeV

Use the explicitly calculated ΔX(i) to 
estimate the uncertainty δX(i) at order Qi:

subject to the additional constraint

easily applicable to any observable!
(scattering, bound states, 3N, …)

no reliance on the cutoff variation!
(not reliable)

error bars found to be consistent with 
68% degree-of-belief intervals
Furnstahl et al., PRC 92 (2015) 024005 
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 3N force studies
With these tools, we are well equipped to tackle the 3N force problem.
Is there any clear evidence for missing 3N forces effects? Yes! Binder et al., arXiv: 1505.07218 [nucl-th] 
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Figure 7: Chiral expansion of the np total cross section at different energies based on R = 0.9 fm
in comparison with experimental data of Ref. [90]. The horizontal band shows the result of the
NPWA.

Table 2: Deuteron binding energy Bd (in MeV), asymptotic S state normalization AS (in fm−1/2),
asymptotic D/S state ratio η , radius rd (in fm), quadrupole moment Q (in fm2) and the D-state
probability PD (in %) based on the cutoff R= 0.9 fm. Notice that rd and Q are calculated without
including exchange current contributions and relativistic corrections. References to experimental
data/empirical values can be found in Ref. [18].

LO NLO N2LO N3LO N4LO Empirical
Bd 2.0235 2.1987 2.2311 2.2246⋆ 2.2246⋆ 2.224575(9)
AS 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
PD 2.54 4.73 4.50 4.19 4.29
⋆The deuteron binding energy has been taken as input in the fit.

NPWA and confirm a good convergence of the chiral expansion. More results for NN observables
can be found in Refs. [18, 19].

As already advertised, the novel approach to uncertainty quantification is not restricted to a
particular choice of the regulator. Carrying out the error analysis for calculations based on different
choices of R thus provides a useful consistency check of the method. In Fig. 9, we show the results
for the total cross section at all orders starting from NLO and for all considered cutoff choices.
Within the quoted errors, the predictions based on different values of R agree with each other and
the NPWA for all orders in the chiral expansion. The accuracy of the predicted results for the cross
section shows the same dependence on the cutoff as the quality of the fits discussed in section 2.4.

In Table 2, we list our results for the deuteron properties. At the considered accuracy level,
the chiral expansion is nearly converged already at N3LO except for PD which is not an observable
quantity.8 The predicted values for AS and η are in excellent agreement with the empirical numbers.

8PD = 5%±1% has been used as an additional “data” point in the fits at N3LO and N4LO in order to stabilize the
results, see Ref. [18] for more detail.
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NN potential in combination with the Tucson-Melbourne 3NF
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Ref. [5].

sults for 4He are obtained both by solving the Faddeev-
Yakubovsky (FY) equations and with the no-core shell
model (NCSM) [8], which agree to within the estimated
uncertainties of these methods. The numerical uncer-
tainties in the FY solutions are a few keV for the energy
and about 0.001 fm for the point-proton radius (r

p

). The
numerical uncertainties from incomplete convergence of
the NCSM (see Ref. [23] for details) are shown as error
bars (color online: red) together with the estimated theo-
retical uncertainties from the truncated chiral expansion
with Q = M

⇡

/⇤
b

(color online: blue).
The quoted empirical value for the point-proton ra-

dius of 4He is extracted from the charge radius r
c

=

 0

 0.1

 0.2

A
yy

10 MeV

 0

 0.1

 0.2

-0.2

-0.1

 0

A
xx

10 MeV
-0.2

-0.1

 0

 0

 0.5

A
yy

70 MeV

 0

 0.5

-0.5

 0
A

xx

70 MeV

-0.5

 0

 0

 0.5

 1

A
yy

135 MeV

 0

 0.5

 1

-0.5

 0

 0.5

A
xx

135 MeV

-0.5

 0

 0.5

 0

 0.5

 1

0 60 120 180

A
yy

�CM [deg]

200 MeV

 0

 0.5

 1

0 60 120 180

�CM [deg]

-1

-0.5

 0

 0.5

 1

0 60 120 180

A
xx

�CM [deg]

200 MeV

-1

-0.5

 0

 0.5

 1

0 60 120 180

�CM [deg]

FIG. 4: (Color online) Predictions for the tensor analyzing
powers A

yy

and A
xx

in elastic Nd scattering based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. For notations see Fig. 3.

1.681(4) fm [24], measured in electron scattering experi-
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and R
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corrections, respectively, andm
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is a relativistic correction due to spin-orbit cou-
pling of the nucleons with nonzero orbital angular mo-
mentum while r2
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denotes the contribution of meson-
exchange currents. The quoted value of r
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= 1.462(6) fm
is taken from Ref. [26], with the contribution r2
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being
neglected. Notice that within the theoretical uncertain-
ties, our results for 3H and 4He are consistent with Quan-
tum Monte Carlo calculations using local chiral EFT NN
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For the 6Li energies, we carried out Similarity Renor-

malization Group (SRG) evolution [28] in order to en-
hance the convergence rate of the NCSM calculations
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(green) and NLO (yellow). The dotted (dashed) lines show
the results based on the CD Bonn NN potential [20] (CD Bonn
NN potential in combination with the Tucson-Melbourne 3NF
[21]). For references to proton-deuteron data (symbols) see
Ref. [5].

sults for 4He are obtained both by solving the Faddeev-
Yakubovsky (FY) equations and with the no-core shell
model (NCSM) [8], which agree to within the estimated
uncertainties of these methods. The numerical uncer-
tainties in the FY solutions are a few keV for the energy
and about 0.001 fm for the point-proton radius (r

p

). The
numerical uncertainties from incomplete convergence of
the NCSM (see Ref. [23] for details) are shown as error
bars (color online: red) together with the estimated theo-
retical uncertainties from the truncated chiral expansion
with Q = M

⇡

/⇤
b

(color online: blue).
The quoted empirical value for the point-proton ra-

dius of 4He is extracted from the charge radius r
c

=

 0

 0.1

 0.2

A
yy

10 MeV

 0

 0.1

 0.2

-0.2

-0.1

 0

A
xx

10 MeV
-0.2

-0.1

 0

 0

 0.5

A
yy

70 MeV

 0

 0.5

-0.5

 0

A
xx

70 MeV

-0.5

 0

 0

 0.5

 1

A
yy

135 MeV

 0

 0.5

 1

-0.5

 0

 0.5

A
xx

135 MeV

-0.5

 0

 0.5

 0

 0.5

 1

0 60 120 180

A
yy

�CM [deg]

200 MeV

 0

 0.5

 1

0 60 120 180

�CM [deg]

-1

-0.5

 0

 0.5

 1

0 60 120 180
A

xx

�CM [deg]

200 MeV

-1

-0.5

 0

 0.5

 1

0 60 120 180

�CM [deg]

FIG. 4: (Color online) Predictions for the tensor analyzing
powers A

yy

and A
xx

in elastic Nd scattering based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. For notations see Fig. 3.

1.681(4) fm [24], measured in electron scattering experi-
ments, by means of the relation [25]

r2
p

= r2
c

�
✓
R2

p

+
3

4m2

p

◆
� N

Z
R2

n

� r2
so

� r2
mec

, (8)

where R
p

and R
n

are the proton and neutron finite size
corrections, respectively, andm

p

is the proton mass. Fur-
ther, r2

so

is a relativistic correction due to spin-orbit cou-
pling of the nucleons with nonzero orbital angular mo-
mentum while r2

mec

denotes the contribution of meson-
exchange currents. The quoted value of r

p

= 1.462(6) fm
is taken from Ref. [26], with the contribution r2

mec

being
neglected. Notice that within the theoretical uncertain-
ties, our results for 3H and 4He are consistent with Quan-
tum Monte Carlo calculations using local chiral EFT NN
potentials up to N2LO [27].
For the 6Li energies, we carried out Similarity Renor-

malization Group (SRG) evolution [28] in order to en-
hance the convergence rate of the NCSM calculations

Elastic nd scattering at interme- 
diate energies: !
The golden window to probe !
the (spin structure) !
of the 3NF 
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FIG. 5: (Color online) Predictions for Egs and rp of 4He and
the energies of the lowest two states of 6Li based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. Theoretical uncertainties (blue) are estimated via
Eqs. (4) and (5) for chiral order i = 0, 2 and via Eqs. (6) and
(7) for i � 3. Numerical uncertainties from the NCSM (red)
are estimated following Ref. [23].

TABLE III: Predicted values for the energies of the ground
and the first excited state of 6Li based on the NN chiral po-
tentials of Refs. [15, 16] up to N4LO for the cuto↵ R = 1.0 fm.
See the text for additional details.

LO NLO N2LO N3LO N4LO Exp.

Egs �46.9(3) �31.7(1) �31.1(1) �26.3(2) �26.9(2) �31.99
E3+ �41.9(6) �29.0(2) �28.3(2) �23.2(3) �23.8(3) �29.81

that were performed in basis spaces up through N
max

=
12 and extrapolated to the infinite matrix limit following
Ref. [28]. We retained the induced 3NF arising from the
SRG evolution, see Ref. [29] for details, and this produces
results for the 6Li energies in Fig. 5 that are independent
of the SRG scale over the range ↵ = 0.04 � 0.08 fm4 to
within our quoted many-body uncertainties. For exam-
ple, at N4LO we obtain E

gs

= �26.9(4) (�26.9(2)) MeV
at ↵ = 0.04(0.08) fm4 for 6Li where the quantified numer-
ical uncertainty in the last digit of the energy is quoted
in parenthesis. Our predictions for the energies of the
ground and the first excited state of 6Li are summarized
in Table III for ↵ = 0.08 fm4.

The patterns for the energies in Fig. 5 as well as for
the r

p

of 4He are very similar to the pattern for the E
gs

of 3H in Fig. 1 and the Nd total cross section at 10 MeV
in Fig. 2. As in 3H, we again observe underbinding in-
dicative of the need for 3NFs, especially at N3LO and
N4LO. This underbinding is correlated with larger r

p

in
4He, which is expected to decrease toward the experi-
mental result as E

gs

is lowered toward experiment with
the inclusion of 3NFs. Note that the energy of the first
excited state in 6Li, with J⇡ = 3+, follows the same pat-
tern as the ground state energy, leading to an excitation
energy that depends much less on the chiral order than
one might naively expect based on the theoretical uncer-
tainties of the binding energies.

To summarize, we have studied in this paper selected

few-nucleon observables using improved chiral NN po-
tentials of Refs. [15, 16] up to N4LO. Our results suggest
that these new chiral forces are well suited for modern
ab initio few- and many-body methods. Using the novel
approach for error analysis introduced in Ref. [15], we
found truly unambiguous evidence for missing 3NF ef-
fects by observing discrepancies between our predictions
and experimental data well outside the range of quanti-
fied uncertainties. The magnitude of these discrepancies
is found to match well with the expected size of the chi-
ral 3NF whose dominant contribution appears at N2LO.
Furthermore, we have demonstrated that the predictions
for Nd and NN scattering observables at the same energy
have comparable accuracy, in agreement with the general
principles of EFT. Most importantly, the expected theo-
retical uncertainty for Nd scattering observables at N3LO
and N4LO in the energy range of E

lab

' 70�200 MeV is
shown to be substantially smaller than the observed dis-
crepancies between state-of-the-art calculations and ex-
perimental data. This suggests that chiral EFT at these
orders should be capable of resolving the long standing
3NF problem in nuclear physics. Work on the explicit
inclusion of the consistent 3NFs is in progress.
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FIG. 5. Comparison of the new PMC data for 12C from the SSE analysis (red filled squares) and

previous calculations [8] for dh = 1 (blue open squares). The notation for the various contributions

to the ground state energy E12 coincides with that of Table I. The results correspond to a trial

state with an SU(4) coupling of −7.0× 10−5 MeV−2, not to be confused with the SU(4) coupling

C4 for the SSE analysis. It should be noted that the exponential deterioration of the Monte Carlo

error has been circumvented. Also, these data should not be interpreted in terms of a “plateau” as

a function of Nt. An analysis of the dependence on Nt is given in Fig. 6, and a concise description

of the Euclidean time extrapolation method can be found in Ref. [25].

TABLE I. Contributions to the ground state energy of 12C after extrapolation to infinite Eu-

clidean projection time. The contributions from the improved leading order amplitude (LO), the

two-nucleon force at next-to-leading order (NLO), the electromagnetic and strong isospin break-

ing (EMIB) and the three-nucleon force at next-to-next-to-leading order (3NF) are shown sepa-

rately. The left column shows the results using the PMC data for dh = 1 from Ref. [8], while the

right column shows the results when the SSE data from this work are included.

Ref. [8] + SSE

LO −96.92(16) −96.85(14)

NLO 10.48(3) 10.47(3)

EMIB 7.76(1) 7.76(1)

3NF −14.80(6) −14.56(4)
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Ab initio alpha–alpha scattering
Serdar Elhatisari1, Dean Lee2, Gautam Rupak3, Evgeny Epelbaum4, Hermann Krebs4, Timo A. Lähde5, Thomas Luu1,5 &  
Ulf-G. Meißner1,5,6

Processes such as the scattering of alpha particles (4He), the 
triple-alpha reaction, and alpha capture play a major role in 
stellar nucleosynthesis. In particular, alpha capture on carbon 
determines the ratio of carbon to oxygen during helium burning, 
and affects subsequent carbon, neon, oxygen, and silicon burning 
stages. It also substantially affects models of thermonuclear type Ia 
supernovae, owing to carbon detonation in accreting carbon–oxygen 
white-dwarf stars1–3. In these reactions, the accurate calculation 
of the elastic scattering of alpha particles and alpha-like nuclei—
nuclei with even and equal numbers of protons and neutrons—is 
important for understanding background and resonant scattering 
contributions. First-principles calculations of processes involving 
alpha particles and alpha-like nuclei have so far been impractical, 
owing to the exponential growth of the number of computational 
operations with the number of particles. Here we describe an  
ab initio calculation of alpha–alpha scattering that uses lattice Monte 
Carlo simulations. We use lattice effective field theory to describe 
the low-energy interactions of protons and neutrons, and apply a 
technique called the ‘adiabatic projection method’ to reduce the 
eight-body system to a two-cluster system. We take advantage of 
the computational efficiency and the more favourable scaling with 
system size of auxiliary-field Monte Carlo simulations to compute 
an ab initio effective Hamiltonian for the two clusters. We find 
promising agreement between lattice results and experimental phase 
shifts for s-wave and d-wave scattering. The approximately quadratic 
scaling of computational operations with particle number suggests 
that it should be possible to compute alpha scattering and capture 
on carbon and oxygen in the near future. The methods described 
here can be applied to ultracold atomic few-body systems as well 
as to hadronic systems using lattice quantum chromodynamics to 
describe the interactions of quarks and gluons.

In recent years there has been much progress in ab initio scattering 
and reactions involving light4–6 and medium-mass7,8 nuclei. However, 
for most numerical methods, the number of computational operations 
increases markedly when the projectile nucleus has more than a few 
nucleons. Therefore it remains a challenge to study many important 
processes that are relevant for stellar astrophysics such as alpha–alpha 
scattering, alpha–carbon scattering and radiative capture, as well as car-
bon and oxygen burning in massive star evolution and thermo nuclear 
supernovae9.

We describe lattice calculations for which the number of compu-
tational (floating point) operations for the A1-body +  A2-body prob-
lem scales as roughly (A1 +  A2)2; this scaling is mild enough to make 
first-principles calculations of alpha processes possible. We use the 
formalism of lattice effective field theory10–12 (EFT) and a technique 
for elastic scattering and inelastic reactions on the lattice called the 
‘adiabatic projection method’13–17.

Chiral EFT is a framework for organizing the low-energy nuclear 
interactions of protons and neutrons according to powers of momenta 
and factors of the mass of the pion; see ref. 18 for a review of the theory. 

The important interactions are at leading order (LO), the next largest 
contributions are at next-to-leading order (NLO), and then follows 
next-to-next-to-leading order (NNLO). We present an ab initio calcula-
tion of  4He +  4He scattering going up to NNLO terms in chiral EFT. We 
find promising agreement with experimental data19–22 for the s-wave 
and d-wave phase shifts; improvements can be achieved by including 
higher-order terms in the chiral expansion.

The adiabatic projection method addresses the cluster–cluster scat-
tering problem on the lattice by using Euclidean time projection to 
construct an effective two-cluster Hamiltonian. By Euclidean time pro-
jection we mean multiplication by exp(−Hτ), where H is the underly-
ing microscopic Hamiltonian and τ is Euclidean time. We use natural 
units, where the reduced Planck constant ћ and the speed of light c 
are set to one. Even though the actual lattice calculations use discrete 
time steps, we refer to the continuous Euclidean time parameter τ  for 
notational simplicity.

Our starting point is a three-dimensional spatial lattice that is peri-
odic with length L in each dimension. We take a set of initial two-alpha 
states | 〉R , labelled by their separation vector R, as illustrated in Fig. 1. 
We take the initial alpha wavefunctions to be Gaussian wave packets, 
so that at large separations they factorize as a tensor product of two 
individual alpha clusters:

∑| 〉 = | + 〉 ⊗ | 〉R r R r
r

1 2

where r is a summation variable corresponding to the location of the 
second cluster. The summation over r produces two-alpha states with 
total momentum equal to zero. Rather than dealing with a large array 
of three-dimensional vectors R, we project onto spherical harmonics 
ℓ ℓY , z

 with angular momentum quantum numbers ℓ ℓ, z:

∑ δ| 〉 = ( ′) | ′〉
′

| |′
ℓ ℓ

ℓ ℓ RR Y R
R

RR
,

, ,
z

z

where δ is the Kronecker delta function. We only consider cases where 
R =  | R|  <  L/2.

On the lattice, the symmetry group of spatial rotations is broken down 
to a cubic subgroup. Nevertheless, at low scattering energies, this approx-
imate rotational symmetry is very accurate, provided that artefacts due  
to the periodic volume are removed. We remove these artefacts using a 
hard spherical wall boundary; the spherical harmonic projection tech-
nique is useful for extracting data for selected partial waves. This method 
has been extended to particles with spin and partial wave mixing, and 
shows excellent agreement with continuous-space calculations23.

We use Euclidean time projection to form dressed cluster states:

τ| 〉 = (− )| 〉τ
ℓ ℓ ℓ ℓR H Rexp, ,z z

The evolution in Euclidean time automatically incorporates the 
induced deformation and polarization of the alpha clusters as they 
approach each other. The deformation and polarization are due to the 
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In Fig. 4 we show phase shifts for d-wave scattering versus laboratory 
energy at LO, NLO and NNLO, compared with experimental data19–22. 
The green dashed (LO), blue short-dashed (NLO), and red solid lines 
(NNLO) are determined from fits to the lattice data using the effective 
range expansion. Although there are differences, the NNLO results 
agree fairly with the experimental results. As in the s-wave case, we 
show the extrapolated values and errors in the limit Lt →  ∞, using 
lattice data for Lt =  4 to Lt =  10. Details of the extrapolation fit and all 
associated error estimates are discussed in Methods. We determined 
the centre-of-mass energy and the decay width of the d-wave reso-
nance of the phase shift data from ref. 22 to be ER =  2.92(18) MeV and 
Γ =  1.34(50) MeV, respectively. Owing to the large decay width, there 
is some model dependence in the definitions of the resonance param-
eters; we discuss several different definitions and determinations in 
Methods. At LO we find ER =  1.10(12) MeV and Γ =  0.32(10) MeV, 
at NLO ER =  3.84(16) MeV and Γ =  3.22(21) MeV, and at NNLO 
ER =  3.27(12) MeV and Γ =  2.09(16) MeV.

To summarize, we present an ab initio calculation of 4He +  4He scat-
tering. We use lattice EFT and the adiabatic projection method to com-
pute phase shifts for s-wave and d-wave scattering up to NNLO, and 
find promising agreement with experimental data. To perform these 
calculations, we used spherical wave projections of the lattice initial 
states and a new algorithm that performs updates of both the auxiliary 
field configurations and alpha cluster positions. A schematic of the 
method is given in Extended Data Fig. 1.

Perhaps the most notable outcome of this study is a numerical 
method for simulating scattering and reactions that has a very favour-
able scaling with particle number. The number of computational oper-
ations needed for the A1-body +  A2-body problem scales roughly as 
(A1 +  A2)2 for light and medium-mass nuclei, and the algorithm does 
not require the projectile to be very light. Because sign oscillations 
are greatly suppressed for alpha-like nuclei12,27, our approach appears 
to be a viable method for studying important processes such as alpha 
scattering and capture on 12C. Direct experimental data for alpha cap-
ture on 12C is not possible, owing to Coulomb barrier suppression at 
energies relevant for stellar nucleosynthesis, and extrapolations from 

higher energies have uncertainties that exceed the 10% accuracy needed 
for stellar evolution models.

Nevertheless, there has been progress in measuring the contribu-
tion from subthreshold states28 and cumulative R-matrix analyses 
using multiple data sources such as beta-delayed alpha-decay of 16N 
and 4He +  12C elastic scattering29. Ab initio lattice calculations can con-
tribute to these efforts by calculating asymptotic normalization coeffi-
cients for subthreshold states, determining the direct capture rate onto 
the ground state, and providing low-energy data on 4He +  12C elastic 
scattering. For these future calculations, we expect that about four times 
as much computing time as the roughly two million core hours used 
for this work will be required; the computational resources available 
appear sufficient to keep stochastic errors under control. To reduce 
systematic errors, we are currently working on including lattice nuclear 
forces at the next-higher order in the chiral expansion, reducing the 
lattice spacing, improving the lattice action, and doing precision tests 
of systematic errors in the adiabatic projection method. If necessary, 
the ab initio lattice results will be further improved by including short-
range operators in the adiabatic Hamiltonian to make fine adjustments 
to the energies of near-threshold states of 16O.

There is an obvious overlap between lattice calculations using the 
adiabatic projection method and halo EFT. Therefore it might be 
fruitful to look for synergies between the two methods. In cases where 
there is a large scale separation between the low-energy scattering and 
high-energy internal excitations, benchmark tests can be made between 
halo EFT and lattice calculations. Furthermore, ab initio calculations 
can be used to determine input data for halo EFT, as done in ref. 30. 
In cases where the separation of scales is not large, lattice calculations 
can be used to guide improvement of halo EFT to include nuclear 
core excitations. It also might be useful to treat the lattice adiabatic 
Hamiltonian as a halo EFT for clusters, and explore extensions to three- 
and four-cluster systems. This method could potentially be used to 
investigate multi-alpha-cluster structures in 12C and 16O.

It would be exciting to extend the methods presented here to lat-
tice quantum chromodynamics (QCD) and construct adiabatic 
Hamiltonians for hadronic systems. All of the techniques used in our 
lattice simulations have immediate analogues in lattice QCD. The initial 
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Figure 3 | s-wave phase shifts. s-wave phase shifts δ0 at LO (green 
triangles), NLO (blue circles), and NNLO (red squares) versus laboratory 
energy ELab, compared with experimental data19–22 (black asterisks). The 
theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion. 
The black dot-dashed line in the inset shows NLO results using halo EFT 
with point-like alpha particles26.
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Figure 4 | d-wave phase shifts. d-wave phase shifts δ2 at LO (green 
triangles), NLO (blue circles), and NNLO (red squares) versus laboratory 
energy ELab, compared with experimental data19–22 (black asterisks). The 
theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion.
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In Fig. 4 we show phase shifts for d-wave scattering versus laboratory 
energy at LO, NLO and NNLO, compared with experimental data19–22. 
The green dashed (LO), blue short-dashed (NLO), and red solid lines 
(NNLO) are determined from fits to the lattice data using the effective 
range expansion. Although there are differences, the NNLO results 
agree fairly with the experimental results. As in the s-wave case, we 
show the extrapolated values and errors in the limit Lt →  ∞, using 
lattice data for Lt =  4 to Lt =  10. Details of the extrapolation fit and all 
associated error estimates are discussed in Methods. We determined 
the centre-of-mass energy and the decay width of the d-wave reso-
nance of the phase shift data from ref. 22 to be ER =  2.92(18) MeV and 
Γ =  1.34(50) MeV, respectively. Owing to the large decay width, there 
is some model dependence in the definitions of the resonance param-
eters; we discuss several different definitions and determinations in 
Methods. At LO we find ER =  1.10(12) MeV and Γ =  0.32(10) MeV, 
at NLO ER =  3.84(16) MeV and Γ =  3.22(21) MeV, and at NNLO 
ER =  3.27(12) MeV and Γ =  2.09(16) MeV.

To summarize, we present an ab initio calculation of 4He +  4He scat-
tering. We use lattice EFT and the adiabatic projection method to com-
pute phase shifts for s-wave and d-wave scattering up to NNLO, and 
find promising agreement with experimental data. To perform these 
calculations, we used spherical wave projections of the lattice initial 
states and a new algorithm that performs updates of both the auxiliary 
field configurations and alpha cluster positions. A schematic of the 
method is given in Extended Data Fig. 1.

Perhaps the most notable outcome of this study is a numerical 
method for simulating scattering and reactions that has a very favour-
able scaling with particle number. The number of computational oper-
ations needed for the A1-body +  A2-body problem scales roughly as 
(A1 +  A2)2 for light and medium-mass nuclei, and the algorithm does 
not require the projectile to be very light. Because sign oscillations 
are greatly suppressed for alpha-like nuclei12,27, our approach appears 
to be a viable method for studying important processes such as alpha 
scattering and capture on 12C. Direct experimental data for alpha cap-
ture on 12C is not possible, owing to Coulomb barrier suppression at 
energies relevant for stellar nucleosynthesis, and extrapolations from 

higher energies have uncertainties that exceed the 10% accuracy needed 
for stellar evolution models.

Nevertheless, there has been progress in measuring the contribu-
tion from subthreshold states28 and cumulative R-matrix analyses 
using multiple data sources such as beta-delayed alpha-decay of 16N 
and 4He +  12C elastic scattering29. Ab initio lattice calculations can con-
tribute to these efforts by calculating asymptotic normalization coeffi-
cients for subthreshold states, determining the direct capture rate onto 
the ground state, and providing low-energy data on 4He +  12C elastic 
scattering. For these future calculations, we expect that about four times 
as much computing time as the roughly two million core hours used 
for this work will be required; the computational resources available 
appear sufficient to keep stochastic errors under control. To reduce 
systematic errors, we are currently working on including lattice nuclear 
forces at the next-higher order in the chiral expansion, reducing the 
lattice spacing, improving the lattice action, and doing precision tests 
of systematic errors in the adiabatic projection method. If necessary, 
the ab initio lattice results will be further improved by including short-
range operators in the adiabatic Hamiltonian to make fine adjustments 
to the energies of near-threshold states of 16O.

There is an obvious overlap between lattice calculations using the 
adiabatic projection method and halo EFT. Therefore it might be 
fruitful to look for synergies between the two methods. In cases where 
there is a large scale separation between the low-energy scattering and 
high-energy internal excitations, benchmark tests can be made between 
halo EFT and lattice calculations. Furthermore, ab initio calculations 
can be used to determine input data for halo EFT, as done in ref. 30. 
In cases where the separation of scales is not large, lattice calculations 
can be used to guide improvement of halo EFT to include nuclear 
core excitations. It also might be useful to treat the lattice adiabatic 
Hamiltonian as a halo EFT for clusters, and explore extensions to three- 
and four-cluster systems. This method could potentially be used to 
investigate multi-alpha-cluster structures in 12C and 16O.

It would be exciting to extend the methods presented here to lat-
tice quantum chromodynamics (QCD) and construct adiabatic 
Hamiltonians for hadronic systems. All of the techniques used in our 
lattice simulations have immediate analogues in lattice QCD. The initial 
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Figure 3 | s-wave phase shifts. s-wave phase shifts δ0 at LO (green 
triangles), NLO (blue circles), and NNLO (red squares) versus laboratory 
energy ELab, compared with experimental data19–22 (black asterisks). The 
theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion. 
The black dot-dashed line in the inset shows NLO results using halo EFT 
with point-like alpha particles26.
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Figure 4 | d-wave phase shifts. d-wave phase shifts δ2 at LO (green 
triangles), NLO (blue circles), and NNLO (red squares) versus laboratory 
energy ELab, compared with experimental data19–22 (black asterisks). The 
theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion.
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interactions of individual nucleons between the two alpha clusters, as 
well as to repulsion as a result of the Pauli exclusion principle for iden-
tical fermions.

With these dressed cluster states, we compute matrix elements of the 
full microscopic Hamiltonian with respect to the dressed cluster states:

= 〈 | | ′〉 ( )τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓH R H R[ ] 1R R,
, , ,z z z

Because the dressed cluster states are not orthogonal, we construct a 
norm matrix:

= 〈 | ′〉τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓN R R[ ]R R,
, , ,z z z

The radial adiabatic Hamiltonian is defined as a matrix product:

= ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z

In the limit of large projection time τ , the spectrum of the adiabatic 
Hamiltonian reproduces the low-energy finite-volume spectrum of the 
microscopic Hamiltonian H. In ref. 17, it is shown that in the asymp-
totic region where the alpha clusters are widely separated, the adiabatic 
Hamiltonian reduces to a simple two-cluster Hamiltonian with only 
infinite-range interactions such as the Coulomb interaction between 
the otherwise non-interacting clusters. Although this may seem an 
obvious result, it is a non-trivial statement that the dependence on the 
projection time τ drops out from the adiabatic Hamiltonian at large 
distances.

We study 4He +  4He scattering using the same lattice action that is 
used to study the Hoyle state of 12C (ref. 11). The spatial lattice spacing 
is a =  1.97 fm and the Euclidean-time, or temporal, lattice spacing is 
at =  1.32 fm. Revisiting these calculations in the future with different 
lattice spacings and including higher-order terms in the chiral expan-
sion will provide a useful measure of systematic errors in lattice calcu-
lations of larger nuclear systems.

We perform projection Monte Carlo simulations with auxiliary fields 
to compute the matrices τ ′

ℓ ℓH[ ]R R,
, z  and τ ′

ℓ ℓN[ ]R R,
, z  on a periodic cubic lattice 

with volume L3 =  (16 fm)3; see ref. 24 for an overview of methods used 
in lattice EFT. The total projection time for the initial and final dressed 
cluster states together is 2τ, which is equal to the product of the number 
of time steps Lt and the temporal lattice spacing at. We determine 
τ ′
ℓ ℓN[ ]R R,
, z  from calculations with Lt time steps and τ ′

ℓ ℓH[ ]R R,
, z  from calcula-

tions with Lt +  1 time steps. The extra time step for τ ′
ℓ ℓH[ ]R R,
, z  is needed 

to calculate the matrix elements of H in equation (1). For these calcu-
lations, a new algorithm is used to allow for Monte Carlo updates of the 
auxiliary fields as well as updates of the alpha cluster positions.

We compute the radial adiabatic Hamiltonian using equation (2) and 
extend it to a much larger volume of (120 fm)3. This is done by 

 computing matrix elements of = ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z at large separation (large R  

and R′ ) from single-alpha lattice simulations, and then including the 
Coulomb interaction between the otherwise non-interacting clusters. 
This process also allows us to define a ‘trivial’ two-cluster Hamiltonian 
in which the two alpha clusters are non-interacting except for the 
infinite-range Coulomb interaction.

With the radial adiabatic Hamiltonian defined in the large (120 fm)3 
box, we extract the scattering phase shifts by imposing a hard spherical 
wall boundary at some radius Rwall and determining the standing wave 
modes. In Fig. 2 we show s-wave radial functions for two different 
radial excitations (2s and 3s) at NNLO using chiral EFT. The error bars 
show 1-standard deviation (s.d.) Monte Carlo errors calculated using 
a jackknife analysis of the lattice data. We could extract the phase shift 
by fitting to the asymptotic behaviour of the radial wavefunction as in 
ref. 17; however, it is more accurate to extract the phase shifts from the 
energy of the standing wave, as discussed in ref. 25.

Figure 3 shows the phase shifts for s-wave scattering versus labo-
ratory energy at LO, NLO, and NNLO in chiral EFT, compared with 
experimental data19–22. The green dashed (LO), blue short-dashed 
(NLO), and red solid lines (NNLO) are determined from fits to the 
lattice data using the effective range expansion (see Methods). For 
further comparison, the inset of Fig. 3 shows NLO results using 
halo EFT with point-like alpha particles26. Halo EFT is an effec-
tive theory in which clusters of tightly bound nucleons are treated 
as point particles. Our LO results do not include Coulomb effects 
and so have substantially different behaviour near the alpha–alpha 
scattering threshold. The NLO and NNLO phase shifts are quite 
similar, and both agree fairly well with the experimental data. The 
close agreement between NLO and NNLO results is probably acci-
dental: several contributions appearing at NNLO seem to cancel 
each other out. The same does not occur for the d-wave phase shifts. 
The results and error bars shown in Fig. 3 are computed from lat-
tice phase-shift data for Lt =  4 to Lt =  10 and extrapolating to the 
limit Lt →  ∞. Details of the extrapolation fit and all associated 
error estimates are discussed in Methods. The observed energy of 
the s-wave resonance in the centre-of-mass frame is 0.09184 MeV 
above threshold. For the lattice results, we find that the ground 
state is 0.79(9) MeV below threshold at LO, and 0.11(1) MeV below 
threshold at both NLO and NNLO (the errors in parentheses here 
and elsewhere represent 1 s.d.).

R 

Figure 1 | Initial state clusters. Initial state | 〉R  composed of two alpha-
particle wave packets on the lattice separated by the displacement vector R. 
Each alpha-particle wave packet consists of four nucleons. Protons are red; 
neutrons are blue; spins are represented as arrows.

2s state
3s state
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Figure 2 | s-wave scattering radial wavefunctions. The second-lowest-
energy (red squares) and third-lowest-energy (blue circles) s-wave radial 
wavefunctions for spherical wall radius Rwall ≈  36 fm (grey dashed line) at 
NNLO plotted versus radial distance. The dashed and double-dot-dashed 
lines show the fits to a Coulomb wavefunction for the second and third 
radial states, respectively. The error bars indicate 1-s.d. Monte Carlo errors 
calculated using a jackknife analysis of the lattice data.
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Used lattice EFT to extract the effective !
Hamiltonian for two interacting α-clusters !
(adiabatic projection method [A. Rokash et al., PRC 92 (15) 054612])

First ab initio calculation of alpha-alpha scattering!

Phase shifts obtained emp-
loying a hard spherical wall 
boundary at asymptotically 
large distances

Promising scaling with 
respect to the number of 
particles as  ~ (A1 + A2)2



Frontier of ab initio calculations from Achim Schwenk, TU Darmstadt 
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•  First NN+3N prediction of the neutron skin, 
weak form factor, dipole polarizability of 48Ca 
 
 
 
 
 
 
 
  
Neutron skin smaller than previously thought! Hagen et al., Nature Phys. 

  

•  In-Medium Similarity Renormalization Group 
 

First nonperturbative derivation of shell-model 
interactions from NN+3N interactions 
Bogner et al., PRL 113, 142501 (2014) 
  
First ab initio description of deformed nuclei 
Stroberg et al., 1511.02802 

  

•  Quantum Monte Carlo with local chiral 3N 
Lynn, Tews et al., 1507.05561, 1509.0347 



Neutron-Star Matter
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EFT for Proton Halos

Delicate interplay between strong and Coulomb interaction

=⇒ two fine tunings required to obtain shallow halo states

=⇒ proton halos are rarer in nature than neutron halos

Range corrections in proton halos
Ryberg, Forssen, Hammer, Platter, arXiv:1507.08675

Explore universal correlations between observables

S-factor for 7Be(p, γ)8B and charge radius of 8B are correlated

Ryberg, Forssen, Hammer, Platter, Eur. Phys. J. A 50 (2014) 170

Few-Body Universality in Halo Nuclei – p. 1

from Hans-Werner Hammer, TU Darmstadt



 Nuclear physics from lattice QCD
Lattice QCD results for light nuclei start to emerge (at high Mπ)

Controversial results: more binding [NPLQCD, Yamazaki et al.] !
versus no binding at all [HAL QCD]

consistency checks are needed! ➙

— π-less EFT & extrapolations in the # of nucl. [Barnea et al.’15]

— Low-energy theorems: long-range interactions imply !
     correlations between coefficients in the effective !
     range expansion

12

TABLE II: Available experimental and infinite-volume lattice QCD data for nucleon-nucleon scattering parameters and bound
state energies in the 1S0 and 3S1 channels at various values of the pion mass.

M⇡ = 138 MeV M⇡ = 300 MeV [42] M⇡ = 390 MeV [36] M⇡ = 510 MeV [38] M⇡ = 800 MeV [40]

The 3S1 channel

Bd [MeV] 2.224 14.5(0.7)(+2.4
�0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)

a [fm] 5.42 not given not given not given 1.82(+0.14
�0.13)(

+0.17
�0.12)

r [fm] 1.75 not given not given not given 0.906(+0.068
�0.075)(

+0.068
�0.084)

The 1S0 channel

Bnn [MeV] – 8.5(0.7)(+2.2
�0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)

a [fm] �23.7 not given not given not given 2.33(+0.19
�0.17)(

+0.27
�0.20)

r [fm] 2.67 not given not given not given 1.130(+0.071
�0.077)(

+0.059
�0.063)
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FIG. 5: Left panel: Linear with M⇡ interpolation of the quantity M⇡r in the 3S1 partial wave according to Eq. (4.17) as
suggested in Ref. [40]. Right panel: Linear with M2

⇡ interpolation of the quantity M⇡r in the 3S1 partial wave according to
Eq. (4.18). In both cases, solid squares refer to the value of M⇡r at the physical point.

IV. IMPLICATIONS FOR LATTICE QCD CALCULATIONS

We are now in the position to confront the LETs with the available lattice QCD results in the NN sector. In table
II, we list the published lattice-QCD results for the S-wave scattering parameters and energies of the bound states
together with the experimental data. We do not show in the table the results from Ref. [35] where volume dependence
was not addressed. Unfortunately, lattice calculations in the NN sector focused so far mainly on the binding energies
and do not provide information on the scattering parameters. An exception is the work of Ref. [40], which provides,
in addition to the binding energies, also the values of the scattering length, e↵ective range and even the first shape
parameter at the pion mass of M⇡ ' 800 MeV. Clearly, such heavy pion masses are out of reach of the LETs. On the
other hand, the authors of Ref. [40] conjectured that the quantity M⇡r may exhibit a nearly linear dependence on
the pion mass. The suggested linear interpolation between the physical point and the lattice result has the form [40]:

M⇡r
⇠= A

(3S1) + B

(3S1)
M⇡, where A

(3S1) = 0.726+0.065
�0.059

+0.072
�0.059 , B

(3S1) = 3.70+0.42
�0.47

+0.42
�0.52 GeV�1

, (4.17)

and is visualized in the left panel of Fig. 5. While we cannot judge on the validity of the suggested linear dependence
of the quantity M⇡r on the pion mass based on the LETs alone, we can test its compatibility with the lattice-QCD
results for the deuteron binding energy available for pion masses within the validity range of the LETs. Specifically,
we employ the e↵ective range r(M⇡) from Eq. (4.17) instead of the scattering length to fix the M⇡ dependence of
the short-range interaction by adjusting the value of C0 in Eq. (2.15) and make predictions for the scattering length,
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FIG. 6: NLO LET predictions for the pion mass dependence of the deuteron binding energy, the ratio �d/M⇡, the ratio a/r
and the first three shape parameters in the 3S1 partial wave assuming the linear M⇡ dependence of the e↵ective range specified
in Eq. (4.17) and visualized in the left panel of Fig. 5. Dark-shaded bands show our estimation of the uncertainty of the NLO
LETs due to the unknown M⇡ dependence of the subleading short-range interaction specified in Eq. (3.16), light-shaded bands
depict the uncertainty in the linear extrapolation of the e↵ective range used as input, as shown in the left panel of Fig. 5.

shape parameters and the deuteron binding energy. Our results for the deuteron binding energy Bd, the ratio �d/M⇡,
where �d =

p
BdmN is the deuteron binding momentum, the ratio a/r and the first three shape parameters M

3
⇡v2,

M

5
⇡v3 and M

7
⇡v4 are visualized in Fig. 6. In this figure, the dark shaded bands result from the variation of the

constant � specified in Eq. (3.16) and reflect the uncertainty of the NLO LETs4. The light-shaded bands correspond
to the resulting uncertainty which emerges from the theoretical uncertainty at NLO and the errors of the linear
interpolation of M⇡r(M⇡) (see the left panel of Fig. 5 and Eq. (4.17)) added in quadrature. Notice that we also show
in Fig. 6 the preliminary lattice-QCD result of the NPLQCD collaboration at M⇡ = 430 MeV [43]. Remarkably, the
linear M⇡ dependence of M⇡r suggested in Ref. [40] indeed appears to describe very well the common trend of the
lattice-QCD results for the deuteron binding energy at intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd, �d/M⇡, a/r and M

3
⇡v2 at the pion mass of M⇡ = 800 MeV can be well described by further

extrapolating our results to heavier pion masses without introducing any strong curvature. Assuming the validity of
Eq. (4.17) for pion masses below the physical one, we conclude that the deuteron becomes unbound for M⇡ ⇠ 50 MeV.
It is also interesting to notice that the scattering length and the shape parameters show rather strong variations with
the pion mass around and below the physical point. This nontrivial behavior is driven by the long-range physics
associated with the pion exchange and is, in principle, testable in lattice QCD. The obtained results for the quantities
�d/M⇡ and a/r, which probe the amount of fine tuning in the NN system, suggest that the physically realized value
of the quark mass is close to the point, which separates the strong fine-tuning regime characterized by the rapidly
growing scattering length from the regime featuring a fairly small amount of fine tuning with a/r = 2 . . . 3 within the
large range of pion masses.

We emphasize that the observed agreement between the predicted M⇡ dependence of the deuteron binding energy and

4 Note that employing the scalar sub-leading potential in Eq. (2.15) instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which is relatively small and appears to be slightly outside of this band
for M⇡ > 250 MeV.
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TABLE II: Available experimental and infinite-volume lattice QCD data for nucleon-nucleon scattering parameters and bound
state energies in the 1S0 and 3S1 channels at various values of the pion mass.

M⇡ = 138 MeV M⇡ = 300 MeV [42] M⇡ = 390 MeV [36] M⇡ = 510 MeV [38] M⇡ = 800 MeV [40]

The 3S1 channel

Bd [MeV] 2.224 14.5(0.7)(+2.4
�0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)

a [fm] 5.42 not given not given not given 1.82(+0.14
�0.13)(

+0.17
�0.12)

r [fm] 1.75 not given not given not given 0.906(+0.068
�0.075)(

+0.068
�0.084)

The 1S0 channel

Bnn [MeV] – 8.5(0.7)(+2.2
�0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)

a [fm] �23.7 not given not given not given 2.33(+0.19
�0.17)(

+0.27
�0.20)

r [fm] 2.67 not given not given not given 1.130(+0.071
�0.077)(

+0.059
�0.063)
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FIG. 5: Left panel: Linear with M⇡ interpolation of the quantity M⇡r in the 3S1 partial wave according to Eq. (4.17) as
suggested in Ref. [40]. Right panel: Linear with M2

⇡ interpolation of the quantity M⇡r in the 3S1 partial wave according to
Eq. (4.18). In both cases, solid squares refer to the value of M⇡r at the physical point.

IV. IMPLICATIONS FOR LATTICE QCD CALCULATIONS

We are now in the position to confront the LETs with the available lattice QCD results in the NN sector. In table
II, we list the published lattice-QCD results for the S-wave scattering parameters and energies of the bound states
together with the experimental data. We do not show in the table the results from Ref. [35] where volume dependence
was not addressed. Unfortunately, lattice calculations in the NN sector focused so far mainly on the binding energies
and do not provide information on the scattering parameters. An exception is the work of Ref. [40], which provides,
in addition to the binding energies, also the values of the scattering length, e↵ective range and even the first shape
parameter at the pion mass of M⇡ ' 800 MeV. Clearly, such heavy pion masses are out of reach of the LETs. On the
other hand, the authors of Ref. [40] conjectured that the quantity M⇡r may exhibit a nearly linear dependence on
the pion mass. The suggested linear interpolation between the physical point and the lattice result has the form [40]:

M⇡r
⇠= A

(3S1) + B

(3S1)
M⇡, where A

(3S1) = 0.726+0.065
�0.059

+0.072
�0.059 , B

(3S1) = 3.70+0.42
�0.47

+0.42
�0.52 GeV�1

, (4.17)

and is visualized in the left panel of Fig. 5. While we cannot judge on the validity of the suggested linear dependence
of the quantity M⇡r on the pion mass based on the LETs alone, we can test its compatibility with the lattice-QCD
results for the deuteron binding energy available for pion masses within the validity range of the LETs. Specifically,
we employ the e↵ective range r(M⇡) from Eq. (4.17) instead of the scattering length to fix the M⇡ dependence of
the short-range interaction by adjusting the value of C0 in Eq. (2.15) and make predictions for the scattering length,

input prediction
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3
] v3 [fm

5
] v4 [fm

7
]
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negative values, except for those of Ref. [8] with large
errors. The earlier calculations [7,8] did not investigate the
volume dependence of ΔEL. More recent studies [2,3,5,6]
examined the dependence and estimated the infinite volume
value through extrapolations [3,5,6] or checked that there
is no significant volume dependence of ΔEL [2]. All the
recent results suggest that the ground states in both
channels are bound states. One exception is Ref. [6] where
the conclusion is not clear due to large errors.
While lattice results are mutually qualitatively consistent,

they differ from experiment in more than one aspects. For the
3S1 channel, the binding energy −ΔE∞ found in the lattice

calculations [2,3,5,6] is a factor 5 to 10 times larger than the
experimental value. Furthermore, we observe no tendency in
the binding energy to approach the experimental value, at
least over the pion mass range mπ ¼ 0.3–0.51 GeV. For the
1S0 channel, the bound state found in the lattice calculations
is absent in experiment. Furthermore, similarly to the 3S1
channel, the binding energy is almost flat in m2

π in the
interval mπ ¼ 0.30–0.51 GeV. It is not clear whether the
bound state observed in the lattice calculation becomes
unbound toward the physical mπ .

IV. CONCLUSION AND DISCUSSION

We have extended our previous nuclei calculation in
2þ 1 flavor QCD at mπ ¼ 0.51 GeV [3] to the lighter
quark mass corresponding to mπ ¼ 0.30 GeV and
mN ¼ 1.05 GeV. In order to suppress an exponential
increase of statistical errors at smaller mπ, we have carried
out a much larger number of measurements by a factor 12
and 5 for the case of the spatial extent of 4.3 fm (483) and
5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
in all channels we have studied, 4He, 3He, and two-nucleon
3S1 and 1S0, the ground state is a bound state by investigating
the volume dependence of energy shift ΔEL. The binding
energies estimated for the infinite volume are as follows:

−ΔE∞ ¼

8
>>>>><

>>>>>:

47ð7Þðþ20
−11Þ MeV for 4He;

21.7ð1.2Þðþ13
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 Summary

Low energy nuclear theory is entering precision era: !
Reliable ab initio few- and many-body calculations based on chiral 

EFT with quantified theoretical uncertainties. 

New generation of accurate and precise chiral nuclear forces

Reliable approach to uncertainty quantifications

Exciting progress in ab initio methods !
(Nuclear lattice simulations, Coupled cluster, In-Medium SRG, Green Function Monte Carlo, …)

Growing computational resources
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