

1

Search for the QCD Critical Point

Hans Georg Ritter LBNL

For the STAR Collaboration

QCD Critical Point

Critical Point in LQCD

Critical Point in LQCD

M. Cheng, et al., arXiv:1001.3796

What to measure

Baryon number susceptibility: $X_{B} \sim \langle (\delta B)^{2} \rangle$ Similar for other conserved quantities, e.g. charge Connection between lattice and fluctuations of conserved quantities Critical fluctuations are Non-gaussian Experimentally: **Net-proton distributions**

What to measure

- Non-gaussian multiplicity fluctuations
- In particular, higher moments sensitive to non-gaussian behavior
 - Kurtosis
 - Skewness
- Higher moments amplify signal

Energy Scan at RHIC

 μ_B up to ~ 550 MeV Look for non-monotonic variations of higher moments of conserved quantity distributions as a function of beam energy Challenging measurement Caveats: Critical slowing down Dynamical effects

B. Berdnikov & K. Rajagopal, Phys. Rev. D 61, 105017 (2000) Stephanov, Rajagopal, Shuryak, Phys. Rev. D 60, 114028 (1999)

Skewness and Kurtosis

- > Skewness describes the asymmetry of the distribution.
- > Kurtosis describes the **peakness** of the distribution.
- For Gaussian Distribution, the skewness and kurtosis are equal to zero. Ideal probes for hone Gaussian fluctuations.

Moments in AMPT

Energy Dependence AMPT

CBM Physics Workshop, GSI, April 14, 2010

CLT, many sources

- Multiplicity dependance can be taken out and results plotted as a function of Npart
- Possible observables:
 - Kurtosis x Variance
 - Skewness x St. deviation
- Question: how many sources
- Caveat:
 - Many sources can mask nongaussian behaviour

Corrected for Multiplicity

The data will be compared this way

CBM Physics Workshop, GSI, April 14, 2010

Data Set:

Collision (MB)	Energy	Events (after vtx. cut)	Year
p+p	62.4 GeV	~0.9M	
	200 GeV	~140k	2006
Cu+Cu	22.4 GeV	~0.6M	2005
	62.4 GeV	~10M	
	200 GeV	~3.6M	
Au+Au	9.2 GeV	~3k	2008
	19.6 GeV	~40k	2001
	62.4 GeV	~5M	2004
	130 GeV	~160k	2000
	200 GeV	~8M	2004

Proton , Anti-proton kinematic cut: |y|<0.5, 0.4<pT<0.8 (GeV/c)

Centrality

Energy Dependence

Summary

- Direct Search for the QCD Critical Point
- Kurtosis and Skewness appear to be promising observables
- We have established the baseline (nulleffect)
- STAR with its large acceptance is ideally suited for such studies
- Beam Energy Scan is underway

