Study QCD Phase Structure in High-Energy Nuclear Collisions

Nu Xu

Nuclear Science Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 USA

(1) Introduction

- (2) Recent results on the formation of partonic matter at RHIC
- (3) STAR physics program (BES)
- (4) Summary

Phase Structure(s) of Matter

The QCD Phase Diagram and High-Energy Nuclear Collisions

QCD Thermodynamics

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory (BNL), Upton, NY

Search for Local Parity Violation

First Observation of ${}_{\overline{\Lambda}}{}^{3}\overline{H} \rightarrow {}^{3}\overline{H}e + \pi^{+}$

Research Article

Observation of an Antimatter Hypernucleus

The STAR Collaboration*†

Partonic Collectivity at RHIC

The QCD Critical Point

RHIC (200) & LHC: Determine the temperature $T_{ini'}$, T_{C}

BES: Explore the QCD phase diagram T_E and the location *phase boundary*

- LGT prediction on the transition temperature $\rm T_{\rm c}$ is robust.

- LGT calculation, universality, and models hinted the existence of the critical point on the QCD phase diagram* at finite baryon chemical potential.

- Experimental evidence for either the critical point or 1st order transition is important for our knowledge of the QCD phase diagram*.

* Thermalization has been assumed

M. Stephanov, K. Rajagopal, and E. Shuryak, PRL <u>81.</u> 4816(98); K. Rajagopal, PR <u>D61.</u> 105017 (00)

http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf

High Moment Analysis (BES)

- 1) High moments are more **sensitive to critical point** related fluctuation.
- 2) The 4th moment, Kurtosis, is directly related to the corresponding thermodynamic quantity: susceptibility for conserved quantum numbers such as Baryon number, charge, strangeness...

See HG Ritter's talk

Observable*: Quark Scaling in v₂

STAR Collaboration: F. Liu, S.S. Shi, K.J. Wu et al.

Beam Energy (GeV)	29 cryo-week	STAR BUR In days	Physics
200	11 1/2 - 3/18	56	
62.4	4 3/20 - 4/17	0	
39	1.5 4/8 - 4/21	5 (24M)	
27		15 (33M)	BES programs
18		16 (15M)	(1) QCD T _E
11.5	2 6/7 - 21	19 (5M)	(2) QCD phase
7.7	4 4/21 – 5/31	56 (5M)	boundary
5.5	0.5 6/2 - 5	5 (0.1M)	

Weekly planning info: http://www.c-ad.bnl.gov/esfd/RMEM_10/rhic_planning.htm

STAR Experiment

Heavy Flavor Tracker at STAR

.....

HFT Key Measurements

STAR Physics Focus

Polarized *p+p* program

- Study proton intrinsic properties

Forward program

- Study low-x properties, search for CGC
- Study elastic (inelastic) processes (pp2pp)
- Investigate gluonic exchanges

1) At 200 GeV top energy

- Study medium properties, EoS
- pQCD in hot and dense medium
- 2) RHIC beam energy scan
 - Search for the **QCD critical point**
 - Chiral symmetry restoration

Timeline of QCD and Heavy Ion Facilities

Study QCD Phase Structure in High-Energy Nuclear Collisions

Summary

- 1) New form of **matter** with **partonic degrees of freedom**: evolution of the universe, QCD phase diagram, critical point, ...
- 2) STAR at RHIC ($\sqrt{s_{NN}} = 200 5$ GeV): search for phase boundary and the possible critical point.
- 3) CBM at FAiR ($\sqrt{s_{NN}} = 9 2$ GeV): **new international endeavor** for the next **few decades'** QCD physics.