

Institut für Theoretische Physik I

Parton/hadron transport in relativistic nucleus-nucleus collisions

Wolfgang Cassing

GSI 14.04.2010

The holy grail:

Signals of the phase transition:

- Multi-strange particle enhancement in A+A
- Charm suppression
- Collective flow (v₁, v₂)
- Thermal dileptons
- Jet quenching and angular correlations
- High p_T suppression of hadrons
- Nonstatistical event by event fluctuations and correlations

Experiment: measures final hadrons and leptons

How to learn about physics from data?

Compare with theory!

Hadron-string transport models versus observables

Hadron-string transport models versus observables

Exp. data are not reproduced in terms of the hadron-string picture => evidence for nonhadronic degrees of freedom

PRC 69 (2004) 032302

Transport description of the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

From hadrons to partons

In order to study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent transport model with ≻explicit parton-parton interactions (i.e. between quarks and gluons)! ≻+ explicit phase transition from hadronic to partonic degrees of freedom >lQCD EoS for partonic phase => phase transition is always a cross-over

Transport theory: off-shell Kadanoff-Baym equations for the Green-functions $S_h^{<}(x,p)$ in phase-space representation with the partonic and hadronic phase

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Dynamical QuasiParticle Model (DQPM)

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

plot from A. Peshier

DQPM well matches IQCD
DQPM provides mean-fields for gluons and quarks as well as effective
2-body interactions
and gives transition rates for the formation of hadrons → PHSD

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM thermodynamics (N_f=3)

entropy $\mathbf{s} = \frac{\partial \mathbf{P}}{\partial \mathbf{T}} \rightarrow \mathbf{pressure P}$ **Thermodynamics:** energy density: $\epsilon = Ts - P$ interaction measure: $W(T) := \epsilon(T) - 3P(T) = Ts - 4P$ **IQCD: M. Cheng et al.,** PRD 77 (2008) 014511 0.35 20 0.30 s/T^3 0.25 15 ϵ/T^{4} 0.20 β/g 10 0.15 0.10 $N_{f} = 3$ 5 $N_{f} = 3$ 0.05 equation of state 0.00 0 400 10 200 600 800 100 1000 1000 1 ε [GeV/fm³] T [MeV]

cf. V. D. Toneev, Heavy Ion Phys. 8 (1998) 83

DQPM gives a ,perfect' description of IQCD results !

PHSD - basic concepts

Initial A+A collisions – HSD: string formation and decay to pre-hadrons

Fragmentation of pre-hadrons into quarks: using the quark spectralfunctions from the Dynamical QuasiParticle Model (DQPM)approximation to QCDDQPM: Peshier, Cassing, PRL 94 (2005) 172301;
Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Partonic phase: quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM

elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

- ✓ q + qbar (flavor neutral) <=> gluon (colored)
- ✓ gluon + gluon <=> gluon (possible due to large spectral width)
- ✓ q + qbar (color neutral) <=> hadron resonances

H b gl a

Hadronization: based on DQPM - massive, off-shell quarks and gluons with broad spectral functions hadronize to off-shell mesons and baryons: gluons \rightarrow q + qbar; q + qbar \rightarrow meson (or string); q + q + q \rightarrow baryon (or string) (strings act as ,doorway states' for hadrons)

Hadronic phase: hadron-string interactions – off-shell HSD

PHSD: hadronization

E.g. time evolution of the partonic fireball at initial temperature 1.7 T_c at $\mu_q=0$

Consequences: ☺ ⁰ ² ⁴ ⁶ ⁸ ¹⁰ ≻ Hadronization: q+q_{bar} or 3q or 3q_{bar} fuse to color neutral hadrons (or strings) which furtheron decay to hadrons in a microcanonical fashion, i.e. obeying all conservation laws (i.e. 4momentum conservation, flavor current conservation) in each event!

➤ Hadronization yields an increase in total entropy S (i.e. more hadrons in the final state than initial partons) and not a decrease as in the simple recombination models!

Off-shell parton transport roughly leads a hydrodynamic evolution
 of the partonic system
 W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919;

NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

PHSD: Expanding fireball II

Time-evolution of hadron density

PHSD: spacial phase ,co-existence' of partons and hadrons, but NO interactions between hadrons and partons (since it is a cross-over)

Application to nucleus-nucleus collisions

central Pb + Pb at 158 A GeV

energy balance

particle balance

only about 40% of the converted energy goes to partons; the rest is contained in the ,large' hadronic corona!

Partonic phase at SPS/FAIR/NICA energies

partonic energy fraction vs centrality and energy

Dramatic decrease of partonic phase with decreasing energy and centrality

Proton stopping at SPS

Jooks not bad in comparison to NA49 data, but not sensitive to parton dynamics (PHSD = HSD)!

Rapidity distributions of π , K⁺, K⁻

b pion and kaon rapidity distributions become slightly narrower

PHSD: Transverse mass spectra at SPS

③ PHSD gives harder spectra and works better than HSD at SPS (and top FAIR) energies

B However, at low SPS (and low FAIR) energies the effect of the partonic phase is NOT seen in rapidity distributions and m_T spectra

Rapidity distributions of strange baryons

PHSD similar to HSD, reasonable agreement with data

Rapidity distributions of (multi-)strange antibaryons

enhanced production of (multi-) strange anti-baryons in PHSD

Centrality dependence of (multi-)strange (anti-)baryons

enhanced production of (multi-) strange antibaryons in PHSD

Number of s-bar quarks in hadronic and partonic matter

Number of s-bar quarks in antibaryons for central Pb+Pb collisions at 158 A GeV from PHSD and HSD

→ significant effect on the production of (multi-) strange antibaryons due to a slightly enhanced s-sbar pair production in the partonic phase from massive time-like gluon decay and a larger formation of antibaryons in the hadronization process!

Summary I

• Some exp. data are not well reproduced in terms of the hadron-string picture => evidence for nonhadronic degrees of freedom

•PHSD provides a consistent description of off-shell parton dynamics in line with a lattice QCD equation of state

• The Pb + Pb data at top SPS energies are rather well described within PHSD including baryon stopping, strange antibaryon enhancement and meson m_T slopes (will be also seen at top FAIR energies)

• At low SPS energies PHSD gives practically the same results as HSD (except for strange antibaryons) when the IQCD EoS (where the phase transition is always a cross-over) is used

→ Is the matter at low SPS a ,mixed phase' of hadrons and partons?

PHSD: rapidity spectra at RHIC

PHSD: Transverse mass spectra at RHIC

PHSD gives harder spectra and works better than HSD at RHIC

looks actually too good to be true!

• <u>High p_T suppression signals of QGP:</u>

The attenuation of high p_T -hadrons (R_{AA}) is1.0well reproduced in the hadron-string0.8approach for non-central Au+Au collisions at0.8approach for non-central Au+Au collisions at0.8top RHIC energies, however, the hadron-0.4string model doesn't provide enough high0.2p_T suppression for central Au+Au !

Jet suppression signals of QGP:

STAR observed very strong away-side jet suppression which is NOT reproduced in the hadron-string picture

(◊∇)P/NP

/N_{Trigger} ;0 - p+p min. bias Au+Au Central

=> evidence for strong nonhadronic interactions in the early phase of the reaction!

neai

W. Cassing, K. Gallmeister and C. Greiner, J.Phys.G30 (2004) S801; NPA 748 (2005) 241

Fig. 1. (Color on-line) Preliminary associated particle distributions in $\Delta \eta$ and $\Delta \phi$ with respect to the trigger hadron for associated particles with 2 GeV/ $c < p_T^{assoc} < p_T^{trig}$ in 0-12% central Au+Au collisions. Two different trigger p_T selections are shown: $3 < p_T^{trig} < 4$ GeV/c (upper panel) and $4 < p_T^{trig} < 6$ GeV/c (lower panel). No background was subtracted.

FIG. 2: (color online) Per-trigger correlated yield with $p_T^{trig} > 2.5 \text{ GeV}/\text{c}$ as a function of $\Delta \eta$ and $\Delta \phi$ for \sqrt{s} and $\sqrt{s_{NN}}=200 \text{ GeV}$ (a) PYTHIA p+p and (b) PHOBOS 0-30% central Au+Au collisions. (c) Near-side yield integrated

I: High p_T particle correlations in HSD vs. STAR data

HSD vs. STAR:

[•]away side structure is suppressed in Au+Au collisions in comparison to p+p, however, HSD doesn't provide enough high p_T suppression to reproduce the STAR Au+Au data **near-side ridge structure is NOT seen in HSD!**

V. Konchakovski

II: Intermediate p_T particle correlations in HSD vs. PHOBOS data

HSD vs. PHOBOS:

away side structure is suppressed in Au+Au collision in comparison to p+p, however, HSD doesn't provide enough high p_T suppression to reproduce the PHOBOS Au+Au data
 near-side ridge structure is NOT seen in HSD!

V. Konchakovski

Summary II

PHSD provides a reasonable description of the rapidity spectra and meson m_T slopes for Au+Au collisions at the top RHIC energy

• new exp. data from the STAR and PHOBOS collaborations show a near-side ridge structure in the $\phi-\eta$ angular correlations which is not reproduced in the HSD model

•STAR and PHOBOS observe a very strong away-side jet suppression which is NOT reproduced in the hadron-string picture

=> evidence for strong nonhadronic interactions in the early phase of the reaction ?!

Just let's see what PHSD thinks about the issue!

Thanks to

Elena Bratkovskaya Sascha Juchem Olena Linnyk Volodya Konchakovski

Andre Peshier and the numerous friends and colleagues !