Recent lattice results on QCD thermodynamics

(a short and personally biased overview) Christian Schmidt

FIAS Frankfurt Institute for Advanced Studies and

Helmholtzzentrum
für Schwerionenforschung

Analyzing the equation of state
\longrightarrow determination of the phase diagram
\longrightarrow understanding underling mechanism of the transition

Overview:

Overview:

* Lattice QCD at high temperature:
- getting lattice errors under control
- analyzing the critical behavior « Lattice QCD at high temperature and nonzero density
- isentropic-EoS
- hadronic fluctuations

Overview:

- isentropic-EoS
- hadronic fluctuations
- update on the critical point determination
lattice spacing a

discretize space time and hence all „paths" of quarks and gluons
lattice spacing: \boldsymbol{a}
- continuum limit: $\boldsymbol{a} \rightarrow \mathbf{0}$
- momentum cutoff $\mathcal{O}(1 / a)$
- observables in units of a
\longrightarrow freedom of choosing the lattice action (QCD has to be recovered in the continuum limit)
\longrightarrow different lattice groups mainly differ by their choice of the lattice action

Two different improvements

improving the
dispersion relation

O(a²)-

effects\end{array} \longrightarrow $$
\begin{array}{c}\text { improving the flavor } \\
\text { symmetry breaking }\end{array}
$$\right.\)
\longrightarrow discretization of covariant derivative
-std

-p4

\longrightarrow important to obtain the correct Stefan-Boltzmann limit
\longrightarrow remove the high frequency modes

-fat7

- multi-level smearing, where links remain in $\mathrm{SU}(3)$
\longrightarrow important to obtain the correct hadronic spectrum

Two different improvements

improving the dispersion relation

remove
 $O\left(a^{2}\right)-$ effects
 improving the flavor symmetry breaking

\longrightarrow discretization of covariant derivative
-std

RBC-Bielefeld:

- multi-level smearing, where links remain in $\mathrm{SU}(3)$
\longrightarrow important to obtain the correct Stefan-Boltzmann limit
\longrightarrow important to obtain the correct hadronic spectrum

Two different improvements

> improving the dispersion relation

remove
 $O\left(a^{2}\right)$ effects
 improving the flavor symmetry breaking

\longrightarrow discretization of covariant derivative
-std

-p4

\longrightarrow important to obtain the correct Stefan-Boltzmann limit
\longrightarrow remove the high frequency modes

- multi-level smearing, where links remain in $\mathrm{SU}(3)$
\longrightarrow important to obtain the correct hadronic spectrum
improving the dispersion relation
 remove
O(a2)-
effects $\longrightarrow \begin{gathered}\text { improving the flavor } \\ \text { symmetry breaking }\end{gathered}$
\longrightarrow remove the high frequency modes

- Naik

-p4

\longrightarrow important to obtain the correct hadronic spectrum

Two different improvements

improving the dispersion relation

improving the flavor symmetry breaking
\longrightarrow discretization of covariant derivative
-std

-p4 MILC/HoteCD future plans:

\longrightarrow remove the high frequency modes

\longrightarrow important to obtain the correct hadronic spectrum

- $\mathrm{N}_{\mathrm{f}}=2+\mathrm{I}$: two degenerate u / d quarks + strange quark
-RHMC algorithm
\bullet two lines of constant physics: $m_{l} / m_{s}=0.1, m_{l} / m_{s}=0.05$

\bullet lattice size: $N_{\sigma} / N_{\tau}=4, N_{\tau}=4,6,8,12^{\star}$

$$
T=\frac{1}{N_{\tau} a}
$$

$$
a=0.25,0.17,0.13,0.08 \mathrm{fm}
$$

$$
\text { (at } T=200 \mathrm{MeV} \text {) }
$$

${ }^{\star} \boldsymbol{N}_{\boldsymbol{\tau}}=\mathbf{6}, 8:$ HotQCD (asqtad, p4), Phys.Rev.D80:014504,2009. BW (stout), Phys.Lett.B643:46-54,2006
$N_{\tau}=12$: HotQCD (asqtad) preliminary BW (stout), JHEP 0906:088,2009.

MILC + RBC-Bielefeld \gtrsim

HotQCD Collaboration:
A. Bazavov, T. Bhattacharya, M. Cheng, N. Christ, C. DeTar, S. Gottlieb,
R. Gupta, P. Hegde, U. Heller, C. Jung, F. Karsch, E. Laermann, L. Levkova, C. Miao, R. Mawhinney, S. Mukherjee, P. Petreczky, D. Renfrew, C. Schmidt, R. Soltz, W. Söldner, R. Sugar,
D. Toussaint, W. Unger, P.Vranas

BW Collaboration:

Y.Aoki, S. Borsanyi, S.Durr, Z. Fodor,
S. Katz, S.Krieg, K.Szabo
χ-symmetry vs. deconfinement transition

$$
\begin{array}{rlllllllllll}
\Delta_{l, s}(T)=\frac{\langle\bar{\psi} \psi\rangle_{l, T}-\frac{\hat{m}_{l}}{\hat{m}_{s}}\langle\bar{\psi} \psi\rangle_{s, T}}{\langle\bar{\psi} \psi\rangle_{l, 0}-\frac{\hat{m}_{l}}{\hat{m}_{s}}\langle\bar{\psi} \psi\rangle_{s, 0}} \quad \chi_{s} & =\frac{1}{V T^{3}} \frac{\partial^{2} \ln Z}{\partial \mu_{s}^{2}} \\
& =\frac{1}{V T^{3}}\left(\left\langle S^{2}\right\rangle-\langle S\rangle^{2}\right)
\end{array}
$$

red boxes: $N_{\tau}=12, m_{l}=0.1 m_{s}$

at low $\mathrm{T}: \sim \exp \left(-m_{K} / T\right)$ through $\sqrt{m_{l}}$ extrapolation
significant changes in the same temperature range
asqtad (HotQCD) vs. stout (BW)
$\Delta_{l, s}(T)=\frac{\langle\bar{\psi} \psi\rangle_{l, T}-\frac{\hat{m}_{l}}{\hat{m}_{s}}\langle\bar{\psi} \psi\rangle_{s, T}}{\langle\bar{\psi} \psi\rangle_{l, 0}-\frac{\hat{m}_{l}}{\hat{m}_{s}}\langle\bar{\psi} \psi\rangle_{s, 0}} \quad \chi_{s}=\frac{1}{V T^{3}} \frac{\partial^{2} \ln Z}{\partial \mu_{s}^{2}}$

$$
=\frac{1}{V T^{3}}\left(\left\langle S^{2}\right\rangle-\langle S\rangle^{2}\right)
$$

differences decrease with decreasing a

The transition at μ_{B}

BW

continuum extrapolated values:

$$
\begin{aligned}
& T_{c}\left(\chi_{\bar{\psi} \psi} / T^{2}\right)=152(3)(3) \\
& T_{c}\left(\chi_{S}\right)=169(3)(3)
\end{aligned}
$$

(e-3p): lattice vs. the Hadron Resonance Gas

$$
\left(\frac{\epsilon-3 p}{T^{4}}\right)_{\text {low } T}=\sum_{m_{i} \leq m_{\text {max }}} \frac{d_{i}}{2 \pi^{2}} \sum_{k=1}^{\infty}(\pm)^{k+1} \frac{1}{k}\left(\frac{m_{i}}{T}\right)^{3} K_{1}\left(k m_{i} / T\right)
$$

HotQCD (asqtad, p4), Phys.Rev.D80:014504,2009.

RBC-Bielefeld (p4),
Phys.Rev.D8I:054504,20IO.
non-negligible contribution of heavy resonances in HRG reducing discretization effects or quark mass lowers crossover termerature

(e-3p): lattice vs. the Hadron Resonance Gas

$$
\left(\frac{\epsilon-3 p}{T^{4}}\right)_{\text {low } T}=\sum_{m_{i} \leq m_{\max }} \frac{d_{i}}{2 \pi^{2}} \sum_{k=1}^{\infty}(\pm)^{k+1} \frac{1}{k}\left(\frac{m_{i}}{T}\right)^{3} K_{1}\left(k m_{i} / T\right)
$$

HotQCD (asqtad, p4),
Phys.Rev.D80:014504,2009.
 HotQCD (asqtad), preliminary
non-negligible contribution of heavy resonances in HRG reducing discretization effects from $N_{\tau}=8 \rightarrow 12$ seems to raise e- $3 p$

Simulations with improved staggered fermions (p4fat3)

- chiral symmetry of 2-flavor QCD

$$
S U_{L}(2) \times S U_{R}(2) \simeq O(4)
$$

- hence, if expect \boldsymbol{m}_{s} is large in (2+I)-flavor QCD:
expect universal behavior as of $3 \mathrm{~d}-O(4)$ spins in the vicinity of \boldsymbol{T}_{c} and the chiral limit
- so far no clear evidence from simulations
- staggered fermions preserve a flavor non-diagonal $U(1)$-part of chiral symmetry even at $a>0$
\longrightarrow look for $O(2)$-critical behavior

Magnetic EoS in $O(N)$-spin-models

- order parameter:

$$
\begin{aligned}
& \text { magnetization } M=h^{1 / \delta} f_{G}(z) \\
& \text { universal scaling function }
\end{aligned}
$$

- scaling variable:

$$
\begin{aligned}
& z=t / h^{1 / \beta \delta} \\
& \text { where } t=\frac{1}{t_{0}} \frac{T-T_{c}}{T_{c}} \\
& \text { (reduced temperature) } \\
& h=\frac{H}{h_{0}} \\
& \text { (external field) }
\end{aligned}
$$

- scaling function and critical exponents are known to high precision in condensed matter literature [e.g. Engels et al.]
- scaling function includes Goldstone effect in the limit of $\boldsymbol{z} \rightarrow-\infty$
$z \rightarrow-\infty: \quad h \rightarrow 0, t<0 \quad M(t, h)=M(t, 0)+c_{2}(t) \sqrt{h}+\cdots$

Magnetic EOS in QCD (Nt=4)

- scaling variable: $z=t / h^{1 / \beta \delta}$
(chiral condensate)

$$
t=\frac{1}{t_{0}} \frac{T-T_{c}}{T_{c}} \quad h=\frac{1}{h_{0}} \frac{m_{l}}{m_{s}} \underbrace{\begin{array}{c}
\text { notermined by fits to the data }
\end{array}}_{\text {(quark mass) }}
$$

good agreement with the $\mathrm{O}(2)$ scaling function for $m_{l} / m_{s} \leq 1 / 20$

S. Ejiri et al. [RBC-Bielefeld], PRD 80 (2009) 094505.

News:

- preliminary $\mathrm{N}_{\mathrm{t}}=12$, asqtad results from HotQCD

The Transition:

- reducing a and m_{l} effects studies observables in the same way
- $\mathrm{N}_{\mathrm{t}}=12$ suggests a continuum extrapolated value of $\boldsymbol{T}_{c} \lesssim 170 \mathrm{MeV}$

The EoS:

- $\mathrm{N}_{\mathrm{t}}=12$ suggests that e-3p approaches the HRG value from above

The critical behavior:

- finally strong indications for $\mathrm{O}(\mathrm{N})$ scaling of the magnetic EoS
- hits that the physical point is in the attraction region of a critical point at $\mathrm{m}_{\mathrm{l}}=0$
- optimistic signal for future studies of the QCD phase diagram

Lattice QCD at nonzero density

- direct MC-simulations for $\boldsymbol{\mu}>\mathbf{0}$ not possible

$$
\begin{aligned}
Z(V, T, \mu)= & \int \mathcal{D} A \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp \left\{S_{F}(A, \psi, \bar{\psi})-\beta S_{G}(A)\right\} \\
& =\int \mathcal{D} A \operatorname{det}[M](A, \mu) \exp \left\{-\beta S_{G}(A)\right\} \\
& \text { complex for } \mu>0 \quad \begin{array}{l}
\text { Interpretation as probability is } \\
\text { necessary for MC-Integration }
\end{array}
\end{aligned}
$$

\longrightarrow perform a Taylor expansion around $\mu=0$

Lattice QCD at nonzero density

-Taylor-expansion of the pressure

$$
\frac{p}{T^{4}}=\frac{1}{V T^{3}} \ln Z\left(V, T, \mu_{u}, \mu_{d}, \mu_{s}\right)=\sum_{i, j, k} c_{i, j, k}^{u, d, s}\left(\frac{\mu_{u}}{T}\right)^{i}\left(\frac{\mu_{d}}{T}\right)^{j}\left(\frac{\mu_{s}}{T}\right)^{k}
$$

- calculate Taylor coefficients at fixed temperature
- no sign-problem:
all simulations at $\mu=0$

$$
\begin{aligned}
c_{i, j, k}^{u, d, s} \equiv & \frac{1}{i!j!k!} \frac{1}{V T^{3}} \\
& \left.\cdot \frac{\partial^{i} \partial^{j} \partial^{k} \ln Z}{\partial\left(\frac{\mu_{u}}{T}\right)^{i} \partial\left(\frac{\mu_{d}}{T}\right)^{j} \partial\left(\frac{\mu_{s}}{T}\right)^{k}}\right|_{\mu_{u, d, s}=0}
\end{aligned}
$$

- expansion coefficients reflect fluctuations of various quantum numbers generalized susceptibilities

$$
\begin{gathered}
2!c_{2}^{X}=\chi_{2}^{X}=\frac{1}{V T^{3}}\left(\left\langle X^{2}\right\rangle-\langle X\rangle^{2}\right) \quad \text { quadratic fluctuations } \\
4!c_{4}^{X}=\chi_{4}^{X}=\frac{1}{V T^{3}}\left(\left\langle X^{4}\right\rangle-3\left\langle X^{2}\right\rangle^{2}\right) \quad \text { quartic fluctuations } \\
X=u, d, s, B, Q, s, \cdots
\end{gathered}
$$

Lattice QCD at nonzero density

-Taylor-expansion of the pressure

$$
\frac{p}{T^{4}}=\frac{1}{V T^{3}} \ln Z\left(V, T, \mu_{B}, \mu_{Q}, \mu_{S}\right)=\sum_{i, j, k} c_{i, j, k}^{B, Q, S}\left(\frac{\mu_{B}}{T}\right)^{i}\left(\frac{\mu_{Q}}{T}\right)^{j}\left(\frac{\mu_{S}}{T}\right)^{k}
$$

- calculate Taylor coefficients at fixed temperature
- no sign-problem:
all simulations at $\mu=0$

$$
\begin{aligned}
c_{i, j, k}^{u, d, s} \equiv & \frac{1}{i!j!k!} \frac{1}{V T^{3}} \\
& \left.\cdot \frac{\partial^{i} \partial^{j} \partial^{k} \ln Z}{\partial\left(\frac{\mu_{u}}{T}\right)^{i} \partial\left(\frac{\mu_{d}}{T}\right)^{j} \partial\left(\frac{\mu_{s}}{T}\right)^{k}}\right|_{\mu_{u, d, s}=0}
\end{aligned}
$$

- expansion coefficients reflect fluctuations of various quantum numbers generalized susceptibilities

$$
\begin{gathered}
2!c_{2}^{X}=\chi_{2}^{X}=\frac{1}{V T^{3}}\left(\left\langle X^{2}\right\rangle-\langle X\rangle^{2}\right) \quad \text { quadratic fluctuations } \\
4!c_{4}^{X}=\chi_{4}^{X}=\frac{1}{V T^{3}}\left(\left\langle X^{4}\right\rangle-3\left\langle X^{2}\right\rangle^{2}\right) \quad \text { quartic fluctuations } \\
X=u, d, s, B, Q, S, \cdots
\end{gathered}
$$

Finding trajectories in the $\left(\mu_{l}, \mu_{s}, T\right)$-plane with $s / n_{B}=$ const, $n_{S}=0$ for AGS, SPS, RHIC we have $s / n_{B}=30,45,300$, respectively

MILC (asqtad),
arXiv:I003.5682[hep-lat].
dominated by the 0 th-order in $\boldsymbol{\mu}$
\longrightarrow corrections to p , e are small
\longrightarrow lattice discretization effects similar in $N_{\tau}=4,6$ lattices
baryon number fluctuations

$$
\text { at } \mu_{B}>0\left(\mu_{S}=\mu_{Q}=0\right)
$$

baryon number -
strangeness correlations

strangeness

fluctuations

$$
\chi_{S}=2 c_{0,2}^{B, S}+2 c_{2,2}^{B, S}\left(\frac{\mu_{B}}{T}\right)^{2}+\ldots
$$

$$
C_{B S}=\frac{c_{1,1}^{B, S}+3 c_{3,1}^{B, S}\left(\frac{\mu_{B}}{T}\right)^{2}+\cdots}{\chi_{S}\left(\frac{\mu_{B}}{T}\right)}
$$

LO introduces a peak in the fluctuations/correlations, NLO shifts the peak towards smaller temperatures
\longrightarrow truncation errors become large at $\mu_{B} / T \gtrsim 1.5$

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature $\quad \rightarrow \mu^{\text {CEP }}$

first non-trivial estimate of $T^{\text {CEP }}$ by c_{8} second non-trivial estimate of $T^{\text {CEP }}$ by c_{10}

$$
p=c_{0}+c_{2}\left(\mu_{B} / T\right)^{2}+c_{4}\left(\mu_{B} / T\right)^{4}+\cdots
$$

$$
\chi_{B}=2 c_{2}+12 c_{4}\left(\mu_{B} / T\right)^{2}+30 c_{6}\left(\mu_{B} / T\right)^{4}+\cdots
$$

$$
\begin{aligned}
\rho_{n}(p) & =\sqrt{c_{n} / c_{n+2}} \\
\rho & =\lim _{n \rightarrow \infty} \rho_{n}
\end{aligned}
$$

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature $\quad \rightarrow \mu^{\text {CEP }}$

first non-trivial estimate of $T^{\text {CEP }}$ by c_{8} second non-trivial estimate of T^{CEP} by c_{10}

method for locating of the CEP:

- determine largest temperature where all coefficients are positive $\rightarrow T^{\text {CEP }}$
- determine the radius of convergence at this temperature $\quad \rightarrow \mu^{\text {CEP }}$

first non-trivial estimate of $T^{\text {CEP }}$ by c_{8} second non-trivial estimate of $T^{\text {CEP }}$ by c_{10}

News:

- $\mathrm{N}_{\mathrm{t}}=6$, asqtad results from MILC for Taylor expansion coefficients of the pressure up to the 6th order

The isentropic EoS:

\bullet finite μ corrections to EoS are small for $s / n_{B}=\mathbf{3 0}, 45,300$

Hadronic fluctuations:

- Fluctuations and correlations are well described by a free gas of quarks above $T>(1.5-1.7) T c$ and by a resonance gas for $T<T_{E}$
- Truncation errors of the Taylor series becomes large for $\mu_{B} / T \gtrsim(1-1.5)$

The critical point:

- The radius of convergence of the Taylor expansion can be used to estimate the critical endpoint

