

First Physics with ALICE

Harald Appelshäuser for the ALICE Collaboration

Institut für Kernphysik Goethe-Universität Frankfurt

CERN Large Hadron Collider

- 4 large experiments
- ALICE dedicated to heavy-ion physics

ALICE

*upgrade to the original setup

commissioning and calibration

Inner Tracking System ITS

6 Layers, three technologies (keep occupancy ~constant ~2% for max mult) Silicon Pixels (0.2 m², 9.8 M channels, starting at r = 3.9 cm)) Silicon Drift (1.3 m², 133 k channels) Silicon Strip (4.75 m², 2.6 M channels) Material Budget ~ 1% X/X₀ per layer

Inner Tracking System ITS

Inner Tracking System ITS

on June 15, 2008 the SPD has seen the first sign of life during the beam injection test...

...and the first collision on Sept. 11, 2008!

ITS calibration

alignment with cosmic tracks

 \rightarrow close to design values

Time Projection Chamber TPC

Time Projection Chamber TPC

TPC calibration

- TPC installed in ALICE since 2007, running continuously from May to October 2008 and August to December 2009
- >750 million events (cosmics, krypton, and laser) recorded, with and without B
- first round of calibrations (dE/dx, momentum, alignment, gain) completed before collisions

first collision on Nov. 23 2009

first LHC physics paper Nov. 28 2009

...sufficient to measure $dN_{ch}/d\eta$

→ first LHC physics paper submitted on Nov. 28 2009

ALICE Collaboration Eur.Phys.J.C65:111-125,2010

ALICE in full glory

• on Dec. 6 2009, *stable beams* declared → switch on all ALICE detectors

until Dec. 14:

- ~300k pp events at 900 GeV recorded with B=0.5 T and all ALICE detectors included!
- ~40k pp events at 2.36 TeV SPD only
- → detailed detector validation and first physics analysis

- charged particle density $dN_{ch}/d\eta$ in pp at 0.9 and 2.36 TeV
- multiplicity distributions $P(N_{ch})$ in pp at 0.9 and 2.36 TeV
- transverse momentum dN_{ch}/dp_T distributions in pp at 0.9 TeV
 - → characterize underlying event for rare observables
 → reference for PbPb

pp process fractions

running conditions and trigger

LHC: up to 4x4 counterrotating bunches (~few 10⁹ p each) at injection energy (900 GeV)

• online trigger:

coincidence of beam and MB_{OR} =SPD || V0A || V0C (coverage: 8 units in η !)

- interaction rate: few Hz
- offline event selection: INEL: MB_{OR} NSD: MB_{AND} = V0A && V0A
- no V0 in the 2.36 TeV run:
 → separate analysis, larger systematic errors

Event selection efficiencies determined from Monte Carlo: (PYTHIA 6.4.14 (tune D6T) and PHOJET, folded with detector response)

	SD	DD	ND	INEL	NSD
MB _{OR} :	77-86%	92-98%	100%		
MB _{AND} :	29-34%	49-77%	96-98%		

→ dominates final systematic uncertainties

beam-induced background

ALICE Collaboration Eur.Phys.J.C65:111-125 (2010)

vertex reconstruction

→ common vertex is reconstructed in 83% (MB_{OR}) resp. 93% (MB_{AND}) of the events.

Resolution: 0.1-0.3 mm (longitudinal), 0.2-0.5 mm (transverse)

dN_{ch}/dη

Jan Fiete Grosse Oetringhaus (CERN), Rencontres de Moriond 2010

√s = 900 GeV

√s = 2.36 TeV

dN_{ch}/dη

Jan Fiete Grosse Oetringhaus (CERN), Rencontres de Moriond 2010

6 dN_{ch}/dη ALICE preliminary 5 4 3 √s = 2.36 TeV NSD INEL ALICE pp NSD ALICE pp INEL 2 D6T (109) D6T (109) Atlas CSC (306) Atlas CSC (306) Perugia-0 (320) Perugia-0 (320) Phojet Phojet 0 -2 -1 0 2 η

√s = 2.36 TeV

 some of the models (tunes) fail considerably to describe the data

Jan Fiete Grosse Oetringhaus (CERN), Rencontres de Moriond 2010

Increase from 0.9 to 2.36 TeV

	in %	INEL	NSD
	ALICE prel.	24.8 ^{+6.1} _{-3.0}	24.0 ^{+3.9} _{-1.3}
	CMS		28.4 ± 3.0
P y t h i a	D6T	19.7	18.7
	ATLAS CSC	19.2	18.3
	Perugia-0	19.6	18.5
	Phojet	17.5	14.5

→ stronger-than-expected increase with √s as reported by CMS

→ stronger energy dependence of particle production than expected from models!

multiplicity distributions

$$P(N_{ch}) = \frac{\text{# events with multiplicity } N_{ch}}{\text{all events}}$$

BUT: measured distribution $P(N_{acc})$ does not correspond to $P(N_{ch})$, rather

$$P(N_{acc}) = \sum_{Nch} R(N_{ch}, N_{acc}) \cdot P(N_{ch})$$

 \rightarrow unfolding procedure:

$$\begin{split} \chi^{2}(\mathsf{P}(\mathsf{N}_{ch})) &= \sum_{\mathsf{N}_{acc}} \left(\frac{\mathsf{P}(\mathsf{N}_{acc}) - \sum_{\mathsf{N}_{ch}} \mathsf{R}(\mathsf{N}_{ch},\mathsf{N}_{acc}) \cdot \mathsf{P}(\mathsf{N}_{ch})}{e(\mathsf{N}_{acc})} \right)^{2} \\ &+ \beta \mathsf{R}(\mathsf{P}(\mathsf{N}_{ch})) \end{split}$$

multiplicity distributions

Jan Fiete Grosse Oetringhaus (CERN), Rencontres de Moriond 2010

√s = 2.36 TeV

good agreement with UA5 at 900 GeV
first measurement at 2.36 TeV

multiplicity distributions

Jan Fiete Grosse Oetringhaus (CERN), Rencontres de Moriond 2010

√s = 900 GeV

√s = 2.36 TeV

 MC generators do not describe the energy dependence of the high multiplicity tail correctly

TPC momentum reconstruction

TPC dE/dx

- TPC dE/dx resolution: 5.5% (= design value!)
- TPC particle ID used for track propagation through material and p_T reconstruction.

material budget

• agreement between MC and data within 10%.

transverse momentum spectra

Jacek Otwinowski (GSI), Rencontres de Moriond 2010

- p_T reach: 0.15 10 GeV/c
- power law tail at high p_T

comparison ALICE - CMS

Jacek Otwinowski (GSI), Rencontres de Moriond 2010

comparison ALICE - CMS

Jacek Otwinowski (GSI), Rencontres de Moriond 2010

more to come...

<p_t> versus multiplicity

mean p_t in 0.3<p_t<4 GeV/c and |η|<0.8

- TPC multiplicity scale not corrected yet for efficiency
- large sensitivity to QCD phenomenology

particle correlations

 30.3.2010, 13:01: first pp collisions at √s = 7 TeV

14.4.2010: ~13 million pp events recorded

one (out of 12)
 J/ψ candidates
 in the muon arm

- upon arrival of first collisions, ALICE was ready for first physics
- first analyses of global observables in pp presented by ALICE
- impressive agreement between first physics results of the LHC experiments
- data taking of pp at 7 TeV started successfully, PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV expected in the fall

CERN Large Hadron Collider

1232 dipoles:

- 15 m each
- -~1 MCHF each
- 8.3 T field (~11850 A)
- superconducting, operated at 1.9 K

p – design luminosity: 10³⁴ cm⁻²s⁻¹

2808 bunches with 10¹¹ protons each $\rightarrow I = 0.5 \text{ A}$

 $E_{tot} = 3 \times 10^{14} \times 7 \text{ TeV} \sim = 300 \text{ MJ} \rightarrow 60 \text{ ton truck moving with 200 mph!}$