LATTICE QCD FOR HEAVY ION EXPERIMENTS

Z. Fodor

- University of Wuppertal, Germany: hardware prototype, performing the runs and carrying out the analyses
- Eotvos University, Budapest, Hungary: development of the codes (confined boundary condition and chemical potential derivative)
- Swietokrzyska Academy, Kielce, Poland: determination of the necessary geometries relevant for heavy ion collisions, heavy-ion phenomenology
- → Hardware: Graphics Processor Units for lattice QCD
- \implies Physics goals: curvature at μ =0 & finite volume geometries

Standard picture of the phase diagram and its uncertainties

SC

phase

physical quark masses: important for the nature of the transition n_f =2+1 theory with m_q =0 or ∞ gives a first order transition for intermediate quark masses we have an analytic cross over (no χ PT)

F. Karsch et al., Nucl. Phys. Proc. 129 (2004) 614; Lattice'07 G. Endrodi, O. Philipsen continuum limit is important for the order of the transition: n_f =3 case (standard action, N_t =4): critical m_{ps} \approx 300 MeV with different discretization error (p4 action, N_t =4): critical m_{ps} \approx 70 MeV the physical pseudoscalar mass is just between these two values

what happens for physical quark masses, in the continuum, at what T_c ? N_t =4,6,8,10 lattices correspond to $a\approx$ 0.3 fm, 0.2 fm, 0.15 fm, 0.12 fm CPU: $\approx N_t^{12}$ (thermodynamics): N_t =10 needs 50-times more than N_t =6

Why use Graphical Processing Units?

G.I.Egri, Z.Fodor, C.Holbling, S.D.Katz, D.Nogradi, K.K.Szabo, Comput. Phys. Commun. 177 (2007) 631

lan Buck, Stanford

Gamerz market is big huge: top model costs ∼ \$500

How much power can be utilized for the lattice?

Conjugate gradient: 90% of Dirac matrix multiplication ~ 30 GFlops

How is this possible?

- CPU: lot of transistors do non-computational tasks
- GPU: transistors (almost) only calculate

GPU architecture

- Native data: 2D arrays, textures (for games its content ends up on the screen).
- Each pixel (or fragment): 4 floating point numbers: RGBA color channels.
- Each pixel computation: incoming textures → outgoing textures: same operation on each pixel → massively parallel.
- Like a stream: pipeline should be full → performance is better for large textures (lattices).

Software environment

Bad news:

GPU hardware is undocumented
Only possibility to program it is through graphics drivers
Direct3D or OpenGL environments
OpenGL also under Linux

Main steps:

- allocate textures
- upload textures to video memory
- upload fragment program
- set target texture(s)
- run fragment program
- download output texture to main memory

Upload/download is slow → many runs without download needed e.g. full Conjugate Gradient on GPU, not only Dirac operator

Overlap improving multi-parameter reweighting

Z. Fodor and S.D. Katz, Phys. Lett. B534 (2002) 87

$$Z(m,\mu,\beta) = \int \mathcal{D}U \exp[-S_g(\beta,U)] \det M(m,\mu,U) =$$

$$\int \mathcal{D}U \exp[-S_g(\beta_0,U)] \det M(m_0,\mu=0,U)$$

$$\left\{ \exp[-S_g(\beta,U) + S_g(\beta_0,U)] \frac{\det M(m,\mu,U)}{\det M(m_0,\mu=0,U)} \right\}$$

first line = measure, field configurations of the Monte-Carlo curly bracket = can be measured on each configuration, weight

simultaneously changing several parameters: better overlap e.g. transition configurations are mapped to transition ones

expectation value of an observable O:

$$\langle 0 \rangle_{\beta,\mu,m} = \frac{\sum w(\beta,\mu,m)O(\mu,m)}{\sum w(\beta,\mu,m)}$$

observables to get the transition points at $\mu \neq 0$ (susceptibilities)

Comparison with the Glasgow method

one parameter reweighting single parameter (μ) purely hadronic configurations

New method two parameters (μ and β) transition configurations transition temperature depends on the geometry
 eg. nanotube-water didn't freeze, even at hundreds of degrees below 0°C

A. Bazavov and B. Berg, Phys.Rev. D76 014502 (2007) determined the transition temperature pure SU(3), no qarks with "confined" spatial boundary conditions: more like experiments instead of periodic one (which we use to reach $V \rightarrow \infty$ fast)

large deviation (upto 30 MeV) from the infinite volume limit

⇒ calculate it in full QCD (cross-over) for different geometries.

Joint Research Activity proposal

Wuppertal, Germany — Budapest, Hungary — Kielce, Poland

→ Hardware: Graphics Processor Units for lattice QCD

 \implies Physics goals: curvature at μ =0 & finite volume geometries

expected budget and Community contribution requested

complete cost: 700.000 euros

request: 325.000 euros travels, workshops: each institution 10.000 euros (together 30.000 euros) one person/year (University Wuppertal): 55.000 euros GPU based hardware prototype (University of Wuppertal) 240.000 euros