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Phase Diagram of QCD

® Basic arguments, quark confinement and asymptotic freedom, predict a
transition at 1" ~ AQCD, UB ~ NcolorAQCD:

Hadron/resonance gas (w,/N, resonances) becomes a (color) plasma of quarks
and gluons (Aqcp ~ (hadron size) ™).

Simple arguments lead to the sketch:
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® Order of transition?

Originally, arguments suggested 1st order (discontinuous):
e.g., SQGP ~ NC2010r! while Sug ~ Ng

olor-
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Lattice says: crossover (aj = 0)

® Earliest: Columbia group, PRL 65(1990)2491
® Recent: Wuppertal-Budapest group, Nature 443(2006)675.

Wuppertal-Budapest:
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the peak should have
grown 8x for 1st order
transition

Entropy/T? ~ # of d.o.f. grows (color is
liberated) but no discontinuity

® Quarks are important: w.o. them the transition would be 1st order.

Too many quarks — also 1st order.
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QCD phase diagram (contemporary view)
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® Models (and lattice) suggest crossover turns into 1st order at some pu 5.

® | arge up — Color Flavor Locked phase (“QCD ice”). Challenge - translate theoretical
understanding into predictions (e.g., for neutron stars): mechanical (rigidity), transport
(viscosity), magnetic properties.

® Crossover — “supercritical” fluid. Almost perfect. Strongly coupled. New methods needed.
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® Critical point is a common feature of liquids
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It took a century to explain the phenomenon of critical opalescence — divergent £ of density
fluctuations (Smoluchowski, Einstein). And another 1/2 century to describe critical
phenomena quantitatively — scaling, universality, RG (Landau, Kadanoff, Wilson).
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What would it take to discover QCD critical point?

® Experiment: heavy ion collision energy scan

® Theory: locate the critical point in a lattice QCD calculation
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Sign Problem

® Thermodynamics follows from partition function

Z = Z exp{—0FE} = /D(paths) exp{—SE}

quantum states

® Sr - action on a path in imaginary time 7 from 0 to 3.

® Usually Sg - real. So fD(paths) e~ °F - jtself is a partition function for classical
statistical system in 3 + 1 dimensions. Monte Carlo methods work.

® Not so for i # 0.

e 78 = 7% dot Doyars.
and detDqaxs 1S complex for p # 0.

Monte Carlo translates weight e °Z into probability and fails if S is not real.

® Recent progress based on various techniques of circumventing the problem:
® Reweighting (use weight at . = 0);
® Taylor expansion;
® Imaginary u;
9 ..
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Location of the critical point from the Lattice
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® de Forcrand-Philipsen:
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® Strong N, dependence:
50 - B ® continuum limit is still far?
® role of anomaly and “rooting”?
| \ \ |
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Recent developments
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® RBBC, Gavai-Gupta:
Radius of convergence of
Taylor expansion

® Fodor et al:
Compare
crossover curvatures
for 2 observables

® Strong N; dependence
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Heavy-ion collisions and the phase diagram

® Final state is thermal
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Location of the critical point vs freeze-out
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Fluctuation signatures

® Experiments measure for each event: multiplicities ‘éw“;
Ny, N,, ..., momenta p, etc. ’

These gquantities fluctuate event-by-event.
® Typical measure is stdev, e.g., ((§N)?).

® What is the magnitude of these fluctuations
near the c.p.? (Rajagopal, Shuryak, M.S.) — A

0.5
M(p) (GeVic)

® Universality tells how it grows at the critical point: {(§N)?) ~ &2.

® Correlation length is a universal measure of the “distance” from the c.p.
It diverges as & ~ (Ap or AT)~2/% as the c.p. is approached.

® Magnitude of £ is limited by finite time/size effs: O(3 fm) - (Berdnikov, Rajagopal).

® “Shape” of the fluctuations can be also measured: non-Gaussian moments.
As ¢ — oo fluctuations become more non-Gaussian.
® Higher cumulants show even stronger dependence on £ (arxiv:0809.3450):

(6N)") ~ €57 {(6N)") = 3{(6N)*)* ~ ¢

which makes them more sensitive signatures of the critical point.

Phase diaaram of OCD: the critical point — p. 13/2



Scan
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Concluding remarks

® Phase diagram of QCD still contains many unknowns.

® The QCD critical point is one of the central features of the QCD phase diagram.
Its discovery will transform the phase diagram from theoretical speculation to
text-book knowledge.

® The theory and experiment each have their own challenges. And each
approach needs “data” from the other.
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Appendix
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Critical point on the lattice

Several approaches:

® Reweighting: Fodor-Katz

165__!""I""I""I""I'L_ -‘ 2001:/1/BN725M6V
T o ® 2004: up ~ 360 MeV
i i hf“*g,j!, - C (smaller m, and larger V)
162 — - - ® Taylor expansion: Bielefeld-Swansea (to 1:°)
T e ® 2003: pup ~ 420 MeV
#® 2005: 300 MeV < up < 500 MeV
o e ] ® Taylor expansion: Gavai-Gupta (to x°)
ool ] T » From convergence radius:
e up ~ 180 MeV (more precisely > 180 MeV)
f pesg i B ® Imaginary u: deForcrand-Philipsen, Lombardo,
wor g ‘ et al
gt ] ® Sensitive to ms, perhaps up > 300 MeV
Allton, et al: peak in x g, ® Fixed density: deForcrand, Kratochvila;
but not in Density of states: Fodor, Katz, Schmidt.

® ? (Ny =4, small volumes)
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Observables — theory comments

® Fluctuations:

& Multiplicities —
pro: larger signal — especially protons (coupled to critical mode);
con: larger background (impact param. fluct.)

o Ratios, mean p; —
pro: no impact param. fluct.;
con: smaller signal.

#® Non-gaussian fluctuations (higher moments: skewness, kurtosis) —
pro: strong dependence on £ — large signal;
con: difficult to estimate either signal or background.

# Fluctuations from 1st order transition (nonequilibrium)?
pro: presumably more drammatic;
con: difficult to predict — requires more detailed dyn. assumptions.

® Non-fluctuation observables:
# p/p— Asakawa-Bass-Miiller-Nonaka; based on focusing — trajectories
are “pulled” to larger up at earlier times + earlier freezeout of higher p;,.

® ® True critical point signal should show consistently in several observables.
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NA49 energy scan (20-30-40-80-160)
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® Critical fluctuations:
signal(all) = 2 x signal(half)

® Not so for B.E.C. signal

® w(N) has interesting

centrality dependence.
NAG61 can study it further
also for @, ..
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Focusing

(s/n)qap > (s/n)uc
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