PHENIX Perspectives for the RHIC Energy Scan

Ralf Averbeck,

GSI Helmholtzzentrum für Schwerionenforschung GmbH

for the **PH*ENIX** Collaboration

Symposium on "The Physics of Dense Baryonic Matter" GSI, Darmstadt, March 9-10, 2009

Introduction

- Search for the QCD Critical Point
- Search for the Onset of sQGP Production
- Summary and Outlook

QCD phase diagram

- goal of high energy heavy-ion physics
 - identify phases of matter and their properties
 - locate transitions and their properties

- vanishing μ_B
 - sQGP at top RHIC energy
 - evolution to hadron gas through a continuous rapid crossover transition
 - larger μ_B
 - possibility of a 1st order phase transition
 - → critical point?
 - → phase coexistence line?

→ energy scan at RHIC

Where are we in (T, μ_B)?

• important prerequisite

- initial thermalization in partonic world
 - some idea of T_{initial}?

E E I, 03/10/2009

 evolution into hadronic world

 determine (T, μ_B) at freezeout from particle species ratios

Initial T from thermal photons

enhanced emission of "soft" low-mass virtual photons in Au+Au compared to pp

E E I, 03/10/2009

- consistent with hydrodynamic model calculation assuming 300 MeV < T_{initial} < 600 MeV
- difficulties at low \sqrt{s}
 - signal/background
 - interaction rate at RHIC
- feasible at higher end of RHIC energy scan

Finding the critical point

• hydro prediction

G S 1, 03/10/2009

- critical point "attracts" isentropic trajectories in the (T, μ_B) plane
- focusing causes a broadening of the signal region in (T, μ_B)

→ not necessary to exactly "hit" the critical point in an energy scan!

Stationary state variables

properties

- divergence of stationary state variables at critical point
 - compressibility

$$k_T \propto \left(\frac{T - T_C}{T_C}\right)^{-1}$$

– heat capacity

$$C_V \propto \left(\frac{T-T_C}{T_C}\right)^{-c}$$

related to event-by-event fluctuations of observables

- multiplicity fluctuations
$$\frac{\sigma^2}{\mu^2} = k_B (T/V) k_T$$

$$- <\mathbf{p}_{\mathsf{T}} >$$
fluctuations $4 \sum_{pT} = \frac{1}{C_V}$

• strategy

- study fluctuations as function of μ_{B} (\sqrt{s})
- search for anomalies, i.e. large critical fluctuations

Fluctuations

PHENIX measures fluctuations

no compelling evidence for critical fluctuations yet

critical point search needs further observables

Imits and caveats

 fluctuations σ and correlation length ξ

(Stephanov, Rajagopal, Shuryak: PRD 60(1999)114028)

$$\sigma \propto \xi^2$$

- finite system size
- finite evolution time
- →divergence of ξ (and σ) limited
- system slows down near critical point
 → fluctuations damped (Berdnikov and Rajagopal: PRD 61(2000)105017)
- do critical fluctuations survive hadronization?

Antiproton-to-proton ratio

9

- back to hydro
 - critical point deforms ("attracts") isentropic trajectories in the (T, μ_B) plane 220 phase boundary
 - antiproton-toproton ratio

 $\frac{\overline{p}}{\overline{p}} \sim \exp\left(-2\mu_B / T\right)$ p

- prediction (Asakawa et al., arXiv:0803.2449)
 - antiproton spectra are steeper than proton spectra at high p_{T}
 - more robust than fluctuation observables

La la la la, 03/10/2009

R. Averbeck, PH

Dynamic variables

- again: correlation length ξ is important
- relation between diffusion constant D and ξ (Son & Stephanov) $D \sim \xi^{-1}$
 - large ξ near critical point
 → small diffusion constant D
 - \rightarrow small shear viscosity to entropy density ratio η /s
- bulk viscosity is different $\overline{\eta} \sim \xi^{0.05-0.06}$

• again

- limited system size
- no extreme effects
- expectation close to the critical point
 - minimum in shear viscosity to entropy ratio η/s
 - bulk viscosity only somewhat sensitive

<u>η/s measurements</u>

- need observables that are sensitive to shear stress
- damping ~ η/s
- flow
- fluctuations
- heavy quark motion

E E I, 03/10/2009

S. Gavin and M. Abdel-Aziz: PRL 97:162302, 2006 p_Tfluctuations STAR

Shear viscosity to entropy density ratio (η /s) at RHIC

top RHIC energy

 η/s close to conjectured minimum 1/4π

11

<u>η/s near the critical point</u>

- η/s goes through a minimum near the critical point
 - estimate from Lacey et al. (based on v₂ systematics)
 - T ~ 165-170 MeV
 - $\mu_B \sim$ 120-150 MeV

E E 1, 03/10/2009

critical point search in the region 20 GeV ≤ √s ≤ 62 GeV

Flow systematics

Au nucleu

R. Averbeck, PH ENIX

Au nucleus

 $\rightarrow v_{a}/v_{2}^{2} \approx 0.9$

in-plane

X

initial state of non-central collision

- large asymmetric pressure gradients
- → hydrodynamic flow of partons
- control parameters: ε₀, η, c_s
 translates into
 - final state momentum anisotropy

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{3}N}{p_{\mathrm{T}}d\varphi dp_{\mathrm{T}}dy} \sum_{n=0}^{\infty} 2v_{n}\cos\left(n\left(\varphi - \Psi_{\mathrm{R}}\right)\right) \quad v_{2n} = \left\langle\cos\left(2n\left[\varphi - \Psi_{\mathrm{R}}\right]\right)\right\rangle$$

 hydrodynamic flow exhibits scaling properties which can be validated (or invalidated), e.g.:

13

$$\frac{v_{4,M}(2p_{T})}{v_{2,M}^{2}(2p_{T})} \approx a \left(\frac{1}{4} + \frac{1}{2} \times \frac{v_{4,q}(p_{T})}{v_{2,q}^{2}(p_{T})} \right) \qquad \frac{v_{4,q}(p_{T})}{v_{2,q}^{2}(p_{T})} \approx \frac{1}{2}$$
$$\frac{v_{4,B}(3p_{T})}{v_{2,B}^{2}(3p_{T})} \approx a \left(\frac{1}{3} + \frac{1}{3} \times \frac{v_{4,q}(p_{T})}{v_{2,q}^{2}(p_{T})} \right) \qquad a \approx 1.8$$

G S J (, 03/10/2009

Flow at RHIC

• flow shows KE_T and quark number scaling at top RHIC energy \rightarrow flow is dominantly pre-hadronic

• at what collision energy does scaling set in?

E E I, 03/10/2009

Jet quenching at RHIC

- energy loss of partons from hard scattering through re-scattering
 Hard Production
 Hard Production
 - nuclear modification factor R_{AA} << 1 at high p_T

E E I, 03/10/2009

access medium properties through statistical analysis

Global Systematic Uncertainty± 12%

†q_T~μ

0.4

0.3

0.2

0.1

15

 – example: transport coefficient in PQM model (A. Dainese et al.)
 ≤ ^{0.6} [PHENIX π⁰ (Au+Au 0-5% Central)

A. Adare et al., PRC 77(2008)064907

Medium

 $\omega = xE$

ω=(1-x)E

Light quark opacity

at what collision energy does the onset of light quark opacity occur?

- PHENIX R_{AA} measurements in Cu+Cu collisions – onset for 22.4 GeV $\leq \sqrt{s_{NN}} \leq 62.4$ GeV
- needs p+p and d+A samples in addition to A+A
- feasible only for SPS energies or higher

Heavy quark opacity

• where is the onset of heavy quark opacity?

 interesting energies for heavy quark observables are above SPS energies, not below

Low-mass dileptons at RHIC dielectrons from PHENIX in p+p and Au+Au collisions at √s_{NN} = 200 GeV

- agreement with expected e⁺e⁻ sources in p+p
- enhancement observed in Au+Au collisions

La la la la, 03/10/2009

 \rightarrow can PHENIX measure e⁺e⁻ in an energy scan?

e⁺e⁻ at low RHIC energies

• dielectron cocktail calculation for Au+Au at \sqrt{s} = 17.2 GeV

- assumptions
 - meson yields and phase space distributions as measured at SPS
 - no low-mass enhancement or any other medium effects
- key ingredients
 - -electron ID beyond PHENIX baseline is a must
 - \rightarrow Hadron Blind Detector (HBD)
 - increased luminosity (electron cooling) could have a huge impact

e⁺e⁻ measurements are possible with "CERES quality" (or better) at low RHIC energies!

LS LS II, 03/10/2009

R. Averbeck, PH^{*}ENIX

RHIC boundary conditions

- life becomes difficult towards low energies
- key issues
 - luminosity
 - limited by intra-beam scattering
 - below injection: γ^3 scaling
 - decent event rates above injection
 - difficult below injection energy
 - → improvement: electron cooling
 - lifetime

E E I, 03/10/2009

- only few minutes (below injection energy)
- "continuous" injection?
- → improvement: electron cooling
- large "diamond" length
 - spread of collision
 vertices along beam axis
 - →improvement: electron cooling

itensity [Au e9]

PHENIX boundary conditions

Imitation and strength

- geometrical acceptance ↔ rare probe capabilities
- perspectives for energy scan 2008
 - above injection energy
 - very strong program to determine
 - onset of sQGP signatures
 - quantitative sQGP properties
 - below injection energy
 - contribution to critical point search
- crucial issues for
 - energy scan
 - event rate

E E I, 03/10/2009

- collision trigger
- reaction plane measurement
- electron identification

Relevant PHENIX upgrades

22

• trigger and reaction plane measurement

- reaction plane detector
 - already implemented
 - compatible with future upgrades

electron identification

- Hadron Blind Detector (HBD)
 - commissioning in 2009 p+p run
 - Au+Au run at top energy: 2010

• the future (2010/2011)

- replace HBD with a barrel silicon vertex spectrometer (later: additional endcaps)
 - secondary vertices
 - trigger & reaction plane
 - limited electron ID

E E I, 03/10/2009

Summary & outlook

• PHENIX topics in a RHIC energy scan

- above injection energy
 - strong program to
 - investigate onset of sQGP signatures
 - » hydrodynamic flow and scaling properties of flow parameters
 - » light/heavy quark opacity
 - » low-mass dielectron enhancement
 - » initial temperature
 - » (HBT & three/multi-particle correlations)
 - search for the QCD critical point
- below injection energy
 - contribution to a search for the QCD critical point
 - no rare probe physics program unless
 - drastic improvement in RHIC performance
 - » luminosity
 - » lifetime
 - » length of collision diamond

→ electron cooling could make a huge difference!

R. Averbeck, PH * ENIX