Status of the CBM experiment

Claudia Höhne, GSI Darmstadt

QCD inspired effective models predict rich structure of the phase diagramme at finite μ_B .

- Substantial depletion of the ciral condesate over almost the full lifetime of the fireball.
- ★ Separation of the chiral from the deconfinement phase transition.
- 1st-order transition with a critical end point

The Physics Program of CBM in total

Deconfinement phase transition at high ρ_B

- excitation function and flow
 of strangeness (K, Λ, Σ, Ξ, Ω)
- excitation function and flow
 of charm (J/ψ, ψ', D₀, D[±], Λ_c)
- * melting of J/ψ and ψ'
- QCD critical endpoint
 - excitation function of

event-by-event fluctuations (K/ π ,...)

- The equation-of-state at high ρ_{B}
 - collective flow of hadrons
 - * particle production at threshold energies (open charm?)

Onset of chiral symmetry restoration at high ρ_{B}

★ in-medium modifications of hadrons (ρ , ω , ϕ →e+e-(µ+µ-), D)

- Excitation functions of bulk and rare observables!
- Bulk observables with "unlimited" statistics
- Systematic studies of rare observables (charm, dileptons) with excellent statistics

Experimental challenges

Central Au+Au collision at 25 AGeV 160 p 400 π 400 π⁴ 44 K⁴ 13 K UrQMD + GEANT

up to 106-7 Au+Au reactions/sec hit densities 1 – 100 (cm² event)⁻¹ fast and radiation hard detectors free-streaming readout electronics online event selection (high-level trigger) high speed data acquisition high precision vertex reconstruction identification of leptons and hadrons Iarge, homogenous acceptance (φ symm.) coverage of large surfaces

overall detector concept

1st round of feasibility studies

Claudia Höhne

ne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

The CBM experiment

• tracking, momentum determination, vertex reconstruction: radiation hard silicon pixel/strip detectors (STS) in a magnetic dipole field

- hadron ID: TOF (& RICH)
 - PSD for event characterization
- photons, π^0 , η : ECAL

• high speed DAQ and trigger \rightarrow rare probes!

CBM hardware R&D

CBM feasibility studies

 feasibility studies performed for all major channels including event reconstruction and semirealistic detector setup

di-electrons

di-muons

Ξ

1.325 1.33 1.335

M_m [GeV/c²]

- overall detector concept
- 1st round of feasibility studies

Outline (II)

STS tracking – heart of CBM

Challenge: high track density: ≈ 600 charged particles in $\pm 25^{\circ}$

Task

- track reconstruction: 0.1 GeV/c \leq 10-12 GeV/c $\Delta p/p \sim 1\%$ (p=1 GeV/c)
- primary and secondary vertex reconstruction (resolution \leq 50 μ m)
- V₀ track pattern recognition

Open charm reconstruction

- STS: 8 stations double-sided Silicon micro-strip sensors (8 \times 0.4% λ_0)
- MVD: 2 stations MAPS pixel sensors (0.3% X₀, 0.5% X₀) at z = 5cm and 10cm
- no K and π identification, proton rejection via TOF

D meson reconstruction

- important layout studies: MAPS position and thickness !
- HSD: <D+> = 8 · 10⁻⁶/ev (minbias Au+Au collisions, 25 AGeV)
- D+ \rightarrow K- π + π + 9.2% BR
- 0.1 MHz interaction rate (MAPS readout time $10\mu s$, small pile-up ok)
- 10¹² minb events ~ 16 weeks running time (100% beam availability)

~10¹³ n_{eq} /cm² = lifetime of MAPS

1st MAPS	Position of	D+	D+	D+	
thickness	1st MAPS *	efficiency	S/B (2σ)	in 10 ¹² ev.	
150 μm	10 cm	4.2%	9	31·10 ³	
500 μm	10 cm	1.05%	0.93	8·10 ³	
300 µm	5 cm	2.6%	1.1	19·10 ³	

* 2nd MAPS, 500 μ m Si equivalent, 10 cm (1st 5 cm) or 20 cm

Micro Vertex Detecor (MVD) Development

Artistic view of the MVD

Claudia Höhne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

MAPS Demonstrator @ IKF Frankfurt

- all parts in house, under test or ordered
- demonstrator to be completed and tested until mid 2009!!
- in parallel: investigate zero suppression, setup analysis software

First in-beam experiments of Si strips!

GSI: Test beam line with 2.5 GeV protons *CBM pre-prototype detector systems with free-streaming read-out electronics*

IHEP: SVD-2 experiment, 50 GeV protons CBM demonstrator tracking station operated in the SVD-2 beam tracker

Results from in-beam experiments

R&D on radiation hard Si microstrip detectors

double-sided microstrip detectors

Prototype CBM01 – focus on STS system aspects, radiation soft

Neutron fluence through Silicon Tracking System up to 10¹⁵ n_{eq}/cm²

in 6 years of operation

CBM02 – first prototype with radiation tolerant design

R&D activities:

- novel systematic 2D/3D device and process simulations (ISE-TCAD/Synopsis)
- irradiation tests
- fall back solution:

radiation hard singlesided detectors

Claudia Höhne

ne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

R&D on the Silicon Tracking System

Challenge: detector stations with ultra-low material budget

STS:

8 detectors stations in thermal enclosure

Ladders: sensors, bonded to ultra-thin long micro-cables, read-out electronics at periphery

Stations:

carbon enforced ladder structures with peripheral read-out.

Claudia Höhne

hne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

Progress of simulation studies with the STS

Cluster shape & size modelling in the MVD

- Cluster shapes in MVD modeled, compared and adjusted to testbeam data (CERN, 120 GeV pions)
- MAPS sensor MIMOSA 17 (30 μm)
- Different incident angles (0°-80°)

Be prepared for exotica: multi-strange di-baryons

Fast track reconstruction

- J/ ψ : up to ~10⁸⁻⁹ tracks/s in the silicon tracker (1-10 MHz, ~100 tracks/ev.)
- D-mesons: ~10⁷ tracks/s (0.1 MHz)
- \rightarrow online event selection!
- \rightarrow fast track reconstruction!

Fast track reconstruction

- optimize code, port C++ routines to dedicated hardware
- parallel processing
- make use of manycore architectures of new generation graphics cards etc.
- 2015: few 1000 GPUs do the job!

SIMD Kalman Filter Track Fit on Many-Core Systems

Claudia Höhne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

Detector layout & global track reconstruction

improved detector layout:

- modules with frames \rightarrow study impact on efficiencies
- pad layout of detectors \rightarrow optimization
- aluminum support of mirrors

Claudia Höhne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

RICH & TRD layout studies

- re-designed RICH detector: 6mm glass mirrors, aluminium support, CO₂ radiator, total length1.8 m
- segmented TRD layout including module frames
- STS module layout including ladders, cables ... : still adopt tracking!
- first tests and efficiency studies: 65% e-efficiency at (0.5 1)·10⁴ π -suppr. !

RICH mirror R&D

- find industry partner providing the glass substrate with good surface homogeneity **and** the coating (AI + MgF₂)
- 1st trial: FLABEG GmbH, Furth im Wald, Germany (R = 3.2 m, d = 6mm, Al+MgF₂ coating)
 - good reflectivity
 - surface inhomogeneities on cm scale
 - \rightarrow 2nd prototype from Compas, Czech Republic

RICH mirror R&D

Claudia Höhne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

RICH Photodetector R&D

fhAdcPerStrip2D

4000 F

3500

3000

2500

2000

1500

1000

- Hamamatsu H8500 MAPMT (pixel size ~6x6 mm²)
- readout with self triggered N-XYTER chip?
- collecting first first experiences

500 100 120 80 charge **n-XYTER FEB** attenuator board Farend Harris

10

10

WLS films

Wavelength shifting films – principle and application

- Organic molecules absorbing in the short (UV) wavelength region
- Strong fluorescence in visible region
- Application via evaporation, spin coating/ dip coating

WLS films

 gain of factor ~1.8 in integrated photon number due to extended wavelength range down to 200nm

 continue investigations: application technique, time response, crosstalk effects if used with MAPMT

WLS films

- application technique alternative to evaporation: spin or dip coating
- \rightarrow WLS layer scratch proove, less light diffusion

Dip-coated film, 6 cm/min

Evaporated film, 100 µg/cm²

- simulations for spread of photons on photocathode after absorption and re-emission with WLS film
- \rightarrow photons spread by 3mm (RMS)
- H8500: appr. (6x6) mm² pixels

Claudia Höhne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

RICH Prototype

• prepare small RICH prototype at Natl. University Pusan for test of components and verification of simulations

TRD layout

- ongoing work towards a realistic TRD design
- enlarge TR detection probability by
 - larger gas gap in outer regions (lower rates)
 - double gas layer with intermediate double sided pad plane in inner region (higher rates)

Real size TRD prototypes (double layer type)

Münster-Bucharest development:

 enlarged TR photon detection probability due to larger gas gap

... towards a realistic MuCh detector layout

MuCh detector optimization

systematic study of background distribution assuming different pad segmentation

Comparison of pad segmentation schemes

... towards a realistic MuCh layout

- first 3 detectors stations (high hit densities) GEMs
- later detector stations from straw tubes

1-3

GEMs

X or Y

0°

Hadron Identification

• hadrons will be identified by TOF (80 ps time resolution)

 $purity = \frac{N_K}{N_{all}} \cdot 100\%$

 \rightarrow good kaon-pion separation up to 3.5 GeV/c (99% purity)

calculated for each momentum bin

Claudia Höhne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

K/π Dynamical Fluctuations

- event-by-event K/ π fluctuations from UrQMD
- no large acceptance bias (p < 5 GeV/c)

Purity Study

- purity restriction implies a momentum cut off for kaons
- acceptance effects fluctuation values: rise for lower p-cut off = higher purity of kaons

.... This was an incomplete overview

- GEM and straw tube R&D for MuCh
- RPC R&D

. . . .

MVD

STS

TRD

- ECAL redesign with respect to phase space coverage, feasibility studies including advanced detector simulations: cluster shapes
- simulations on direct photon production, first studies on flow and reaction plabe resolution with the proposed PSD

For the presented R&D and simulation status I thank:

– C. Müntz

– J. Heuser

– I. Kisel

RICH – M. Dürr, P. Koczon

– M. Klein-Bösing

Fast tracking

Simulations

- C. Dritsa, A. Kiseleva, D. Kresan, A. Lebedev,
 - S. Lebedev, I. Vassiliev

- overall detector concept
- 1st round of feasibility studies

CBM collaboration

China:

Tsinghua Univ., Beijing CCNU Wuhan USTC Hefei

Croatia:

University of Split RBI, Zagreb

Cyprus:

Nikosia Univ.

Czech Republic:

CAS, Rez Techn. Univ. Prague

France:

IPHC Strasbourd

Germany:

Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt

Univ. Mannheim Univ Münster

FZ Rossendorf

GSI Darmstadt

Hungaria:

KFKI Budapest Eötvös Univ. Budapest

India:

Aligarh Muslim Univ., Aligarh IOP Bhubaneswar Panjab Univ., Chandigarh Gauhati Univ., Guwahati Univ. Rajasthan, Jaipur Univ. Jammu, Jammu IIT Kharagpur SAHA Kolkata Univ Calcutta, Kolkata VECC Kolkata Univ. Kashmir, Srinagar Banaras Hindu Univ., Varanasi

Korea:

Korea Univ. Seoul Pusan National Univ.

Norway:

Univ. Bergen

Poland:

Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Nucl. Phys. Inst. Krakow

Portugal:

LIP Coimbra

Romania:

NIPNE Bucharest Bucharest University

<u>Russia:</u>

IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst. Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U.

Ukraine:

INR, Kiev Shevchenko Univ. , Kiev

Expected particle yields

particle	Ν	decay	BR	R/s	Т	ϵ	Y/s	Y/10 w
		mode		(MHz)		(%)		
η	6.6	$\mu^+\mu^-$	$5.8 \cdot 10^{-6}$	0.25	у	3	0.28	$1.7 \cdot 10^{6}$
K^+	8	-	-	0.025	n	18.4	$3.7 \cdot 10^{4}$	$2.2 \cdot 10^{11}$
K^-	2.6	-	-	0.025	n	18.4	$1.2 \cdot 10^{4}$	$7.2 \cdot 10^{10}$
K_s^0	5.4	$\pi^+\pi^-$	0.69	0.025	n	10	$9.3 \cdot 10^{3}$	$5.6 \cdot 10^{10}$
ρ	4.6	e^+e^-	$4.7 \cdot 10^{-5}$	0.025	n	4.6	0.25	$1.5 \cdot 10^{6}$
ρ	4.6	$\mu^+\mu^-$	$4.6 \cdot 10^{-5}$	0.25	у	2.7	1.4	$8.6 \cdot 10^{6}$
ω	7.6	e^+e^-	$7.1 \cdot 10^{-5}$	0.025	n	6.8	1	$5.5 \cdot 10^6$
ω	7.6	$\mu^+\mu^-$	$9 \cdot 10^{-5}$	0.25	у	3.7	6.3	$38 \cdot 10^{6}$
ϕ	0.256	e^+e^-	$3 \cdot 10^{-4}$	0.025	n	9.8	0.19	$1 \cdot 10^{6}$
ϕ	0.256	$\mu^+\mu^-$	$2.9 \cdot 10^{-4}$	0.25	у	6	1.	$6.7 \cdot 10^{6}$
Λ	6.4	p π^-	0.64	0.025	n	10.6	$1.1 \cdot 10^{4}$	$6.5 \cdot 10^{10}$
[1]	0.096	$\Lambda \pi^-$	0.999	0.025	n	2.1	50.4	$3 \cdot 10^{8}$
Ω^{-}	0.0044	ΛK^-	0.68	0.025	n	1	0.75	$4.5 \cdot 10^{6}$

$Y / s = N \cdot BR \cdot \varepsilon \cdot R / s$

Claudia Höhne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

Expected particle yields

particle	N	decay	BR	R/s	Т	ϵ	Y/s	Y/10 w
		mode		(MHz)		(%)		
D^0	$7.5 \cdot 10^{-6}$	$K^-\pi^+$	0.038	0.1	у	3.25	$8.5 \cdot 10^{-4}$	$5.1 \cdot 10^{3}$
D^0	$7.5 \cdot 10^{-6}$	$K^-\pi^+\pi^+\pi^-$	0.075	0.1	у	0.37	$2.1 \cdot 10^{-4}$	$1.3 \cdot 10^{3}$
D^0	$2.3 \cdot 10^{-5}$	$K^+\pi^-$	0.038	0.1	у	3.25	$2.6 \cdot 10^{-3}$	$1.6 \cdot 10^4$
D^+	$8 \cdot 10^{-6}$	$K^-\pi^+\pi^+$	0.092	0.1	у	4.2	$3.1 \cdot 10^{-3}$	$1.9 \cdot 10^{4}$
D^-	$1.8 \cdot 10^{-5}$	$K^+\pi^-\pi^-$	0.092	0.1	у	4.2	$7 \cdot 10^{-3}$	$4.2 \cdot 10^{4}$
D_s^+	$1.08 \cdot 10^{-6}$	$K^+K^-\pi^+$	0.053	0.1	у	1	$5.7 \cdot 10^{-5}$	$3.5 \cdot 10^2$
Λ_c	$4.9 \cdot 10^{-4}$	$pK^-\pi^+$	0.05	0.1	у	0.5	$1.2 \cdot 10^{-2}$	$7.4 \cdot 10^{4}$
J/ψ	$3.8 \cdot 10^{-6}$	e^+e^-	0.06	10	у	13	0.32	$1.9 \cdot 10^{6}$
ψ'	$5.1 \cdot 10^{-8}$	e^+e^-	$7.3 \cdot 10^{-3}$	10	у	14	$5.2 \cdot 10^{-4}$	$3.2 \cdot 10^{3}$
J/ψ	$3.8 \cdot 10^{-6}$	$\mu^+\mu^-$	0.06	10	у	16	0.36	$2.2 \cdot 10^{6}$
ψ'	$5.1 \cdot 10^{-8}$	$\mu^+\mu^-$	$7.3 \cdot 10^{-3}$	10	у	19	$7.1 \cdot 10^{-4}$	$4.3 \cdot 10^{3}$

$Y / s = N \cdot BR \cdot \varepsilon \cdot R / s$

Claudia Höhne Physics Symposium, 13th CBM collaboration meeting, GSI, March 2009

Online event reconstruction and selection

2009: 50 ms/ min. bias event (1 CPU) 5×10^5 CPU 10⁷ events/s

Transition to many-core & wide-SIMD systems: 10^4 CPU \rightarrow GPU: today 1 TFlop/system (50 × today's CPU) GPU

2015: with help of "Moore's Law" \Rightarrow several 1000 GPU

Physics cases:

- 1) $J/\psi \rightarrow e^+e^-$: min. bias events
- 2) Open charm: limited by MVD $(10^5 10^6 \text{ events/s})$
- 3) J/ ψ with $\mu^+\mu^-$: pre-selection by MUCH (× 10⁻³)
- 4) ω , ϕ with $\mu^+\mu^-$: pre-selection by MUCH (× 10⁻¹)

Many-core HPC

- High performance computing (HPC)
- Highest clock rate is reached
- Performance/power optimization
- Heterogeneous systems of many (>8) cores
- Similar programming languages (OpenCL, Ct and CUDA)
- We need a uniform approach to all CPU/GPU families

- On-line event selection
- Mathematical and computational optimization
- SIMDization of the algorithm (from scalars to vectors)
- MIMDization (multi-threads, many-cores)

RICH mirror R&D

- 2nd mirror prototype: Compas, Czech Republic (R = 3m, d = 3mm, Al+MgF₂ coating)
 - reflectivity ? to be tested
 - good surface homegeneity

