News from NA49 and NA61 Status and Plans

News from NA49NA61 status and plans

M. Gazdzicki, Frankfurt, Kielce for the NA61 and NA49 Collaborations

Important examples:

Energy dependence of azimuthal correlations: The HOLE-JET transition

<u>Resonances in central Pb+Pb collisions:</u> The long lasting hadronic phase

<u>Centrality dependence of baryon spectra:</u> The limited rescattering at the interpenetration stage

Energy dependence of azimuthal correlations: The HOLE-JET transition

Plane transverse to the collision axis

Central Pb+Pb collisions at the SPS energies

NA49: M. Szuba et al., 0809.5210 More at QM2009

The HOLE-JET transition is located at the low SPS energies, where the signals of the onset of deconfinement have been previously observed by NA49

Is this by chance?

Final NA49 data: Phys.Rev.C77:024903,2008

Predictions: M.G., Gorenstein, Acta Phys.Polon.B30:2705,1999

<u>Resonances in central Pb+Pb collisions:</u> The long lasting hadronic phase

strong suppression of the resonance yield in central Pb+Pb collisions The suppression increases with decreasing resonance life-time

Rescattering of decay products in the long lasting hadronic phase

The freeze-out temperature decreases with an increasing system size

NA49: M. Slodkowski

<u>Centrality dependence of baryon spectra:</u> The limited rescattering at the interpenetration stage

The proton rapidity spectra are almost independent of centrality

Early stage conditions are centrality/system size independent Baryo-chemical potential is centrality/system size independent

NA49: M. Utvic

Physics goals (I): Physics of strongly interacting matter

Discovery potential:

Search for the critical point of strongly interacting matter

Precision measurements:

- Study the properties of the onset of deconfinement in nucleus-nucleus collisions
- Measure hadron production at high transverse momenta in p+p and p+Pb collisions as reference for Pb+Pb results

Physics goals (II):

Data for neutrino and cosmic ray experiments

Precision measurements:

Measure hadron production in the T2K target needed for the T2K (neutrino) physics

Measure hadron production in p+C interactions needed for T2K and cosmic-ray, Pierre Auger Observatory and KASCADE, experiments

The NA61/SHINE Collaboration:

123 physicists from 24 institutes and 13 countries:

University of Athens. Athens. Greece University of Bergen, Bergen, Norway University of Bern, Bern, Switzerland **KFKI IPNP, Budapest, Hungary** Cape Town University, Cape Town, South Africa Jagiellonian University, Cracow, Poland loint Institute for Nuclear Research, Dubna, Russia Fachhochschule Frankfurt, Frankfurt, Germany University of Frankfurt, Frankfurt, Germany University of Geneva, Geneva, Switzerland Forschungszentrum Karlsruhe, Karlsruhe, Germany Institute of Physics, University of Silesia, Katowice, Poland Jan Kochanowski Univeristy, Kielce, Poland Institute for Nuclear Research, Moscow, Russia LPNHE, Universites de Paris VI et VII, Paris, France Faculty of Physics, University of Sofia, Sofia, Bulgaria St. Petersburg State University, St. Petersburg, Russia State University of New York, Stony Brook, USA **KEK, Tsukuba, Japan** Soltan Institute for Nuclear Studies, Warsaw, Poland Warsaw University of Technology, Warsaw, Poland University of Warsaw, Warsaw, Poland Rudjer Boskovic Institute, Zagreb, Croatia **ETH Zurich, Zurich, Switzerland**

NA61/SHINE at the CERN SPS

<u>Detector</u>

NA49: Nucl. Instrum. Meth. A430, 210 (1999) NA61 upgrades: CERN-SPSC-2006-034, SPSC-P-330

Performance of the NA61 detector:

Results of the 2007 run:

Large acceptance: $\approx 50\%$ High momentum resolution: $\sigma(p)/p^2 \approx 10^{-4} ((GeV/c)^{-1})$ at full magnetic field Good particle identification: $\sigma(TOF) \approx 100 \, ps$, $\sigma(dE/dx)/\langle dE/dx \rangle \approx 0.04$, $\sigma(m_{inv}) \approx 5 MeV$ High detector efficiency: > 95% Event rate: 70 events/sec

Details in: CERN-SPSC-2008-018; SPSC-SR-033

Performance of the NA61 detector:

Significantly improvements in comparison to NA49

- -10 times higher event rate,
- -ToF acceptance extended to low momenta (≈1 GeV/c),
- -projectile spectator measurements with a precision of a single nucleon
- -high flexibility in selection of the wanted ion beam
- -low δ-electron background

NA61: Posiadala, Murphy

Status and plans:

-NA61 was approved at CERN in June 2007,

-the pilot run was performed during October 2007,

-the commissioning of the TPC read-out upgrade and DAQ was performed during September 2008

-the 2008 run has been cut due to the LHC incident

-2011-2013: runs with secondary ion beams produced from the primary Pb beam (compatibility with I-LHC is requested)

This year 4 months of the beam time, Start of the energy-system size scan, p+p interactions at 10, 20, 30, 40, 80 and 158 GeV

NA61/SHINE energy-system size scan

= 2.10⁶ registered collisions

Study the onset of deconfinement

energy (A GeV)

Search for the onset of the horn in collisions of light nuclei

Search for the critical point

NA61/SHINE updated beam request

Beam	Beam	Target	Energy	Year	Days	Physics	Status
Primary	Secondary		$(A \mathrm{GeV})$				
р			400				
	р	C(T2K)	31	2009	21	T2K, C-R	recommended
р			400				
403±00	π^{-}	\mathbf{C}	158,350	2009	2x7	C-R	recommended
р			400				
913 ED	\mathbf{p}	р	$10,\!20,\!30,\!40,\!80,\!158$	2009	6x7	CP&OD	recommended
р			400				
	р	\mathbf{p}	158	2010	77	High p_T	recommended
Pb			10,20,30,40,80,158				
	$A \approx 30$	$A\approx 30$	$10,\!20,\!30,\!40,\!80,\!158$	2011	6x7	CP&OD	recommended
р			400				
	\mathbf{p}	\mathbf{Pb}	158	2011	6x7	High p_T	recommended
Pb			10,20,30,40,80,158				
	$A\approx 10$	$A\approx 10$	$10,\!20,\!30,\!40,\!80,\!158$	2012	6x7	CP&OD	$to \ be \ discussed$
р			400				
	р	\mathbf{Pb}	$10,\!20,\!30,\!40,\!80,\!158$	2012	6x7	CP&OD	recommended
Pb			10,20,30,40,80,158				
	$A\approx 100$	$A\approx 100$	$10,\!20,\!30,\!40,\!80,\!158$	2013	6x7	CP&OD	$to \ be \ discussed$

Secondary Hadron Beam Line for NA61:

-selects beam of hadrons with a fixed p momentum -further hadron identification possible by mass measurements

Secondary hadron beam in NA61:

C1 and C2 - proton identification, S1, S2, V0, V1, BPD1/2/3 - determination of proton trajectory, S4 - selection of p+target interactions

Example: beam of positively charged hadrons at 31 GeV/c

Secondary Ion Beam Line for NA61:

Secondary Ion Beam Line for NA61:

-selects beam of nuclei with close Z and A, -further ion identification possible by Z (charge) measurements -momentum per nucleon cannot be changed

Conclusions:

New period in the experimental study of A+A collisions at the SPS energy range starts this year with the p+p energy scan of NA61/SHINE at the CERN SPS

We looking forward for start of the corresponding programs at RHIC, NICA and FAIR as well as for exciting first data from the CERN LHC

Additional slides

The HOLE-JET transition:

Next evidence for the onset of deconfinement?

Base on statistical approach to strong interactions

Acta Phys.Polon. B30:2705, 1999. Phys.Rev. C78:024904, 2008. HADRON GAS – a system of hadrons close to equilibrium

HOLE – a medium range anti-correlation of hadrons with a high transverse momentum hadron

The HOLE effect appears in the MCE HG model as a consequence of transverse momentum conservation (Borghini, Hauer)

After Michael Hauer

QGP – a system of quarks and gluons close to equilibrium

JET – a medium-range correlation of hadrons with a high transverse momentum hadron

The JET effect appears as a consequence of the evolution and hadronization of the QGP quarks and gluons with high transverse momenta

Comparison of two approaches

statistical

dynamical

Jet:	evolution and hadronization of high p_parton	evolution and hadronization high p_parton
High p _T parton:	statistical fluctuation	hard parton-parton scattering
Hole-Jet transition:	onset of deconfinement	onset of hard parton-parton scattering
Away-side enhancement:	global momentum conservation	away-side jet quenching
Power law p _T spectra:	scaling volume fluctuations	dynamics of parton-parton scattering

Experimental landscape of complementary programs of nucleus-nucleus collisions around the SPS energies

Facility:	SPS	RHIC	NICA	SIS-100 (SIS-300)
Exp.:	NA61	STAR PHENIX	MPD	CBM
Start:	2011	2011	2014	2014 (2016)
Pb Energy: (GeV/(N+N))	4.9-17.3	4.9-50	≤9	≤5 (<8.5)
Event rate: (at 8 GeV)	100 Hz	1 Hz(?)	≤10 kHz	≤10 MHz
Physics:	CP&OD	CP&OD	OD&HDM	HDM (OD)

- *CP critical point*
- OD onset of deconfinement, mixed phase, 1st order PT
- HDM hadrons in dense matter

Experimental landscape: the complementary programs

