

Charm dynamics from transport calculations

Olena Linnyk

Introduction

FAIR energies are well suited to study dense and hot nuclear matter –

- a phase transition to QGP ,
- chiral symmetry restoration,
- in-medium effects

Way to study: Experimental energy scan of different observables in order to find an ,anomalous' behavior in comparison with <u>theory</u>

Observables for CBM:

- Excitation function of particle yields and ratios
- **Transverse mass spectra**
- **Collective flow**
- **Dileptons**
- Open and hidden charm
- Fluctuations and correlations

Microscopic transport models

Signals of the phase transition:

- Strangeness enhancement
- Multi-strange particle enhancement
- Charm suppression
- Collective flow (v₁, v₂)
- Thermal dileptons
- Jet quenching and angular correlations
- High p_T suppression of hadrons
- Nonstatistical event by event fluctuations and correlations

•••

Experiment: measures final hadrons and leptons

How to learn about physics from data?

Compare with theory!

Models for heavy ion collisions

Microscopical transport models provide the dynamical description of nonequilibrium effects in heavy-ion collisions

Basic concepts of Hadron-String Dynamics

• for each particle species *i* (*i* = *N*, *R*, *Y*, π , ρ , K, ...) the phase-space density f_i follows the transport equations

$$\left(\frac{\partial}{\partial t} + \left(\nabla_{\vec{p}}H\right)\nabla_{\vec{r}} - \left(\nabla_{\vec{r}}H\right)\nabla_{\vec{p}}\right)f_i(\vec{r},\vec{p},t) = I_{coll}(f_1,f_2,...,f_M)$$

with the collision terms I_{coll} describing:

elastic and inelastic hadronic reactions BB <-> B'B', BB <-> B'B'm, mB <-> m'B', mB <-> B'

- o formation and decay of baryonic and mesonic resonances
- string formation and decay (for inclusive production: BBOAX, mBOAX, X =many particles)
- Implementation of detailed balance on the level of 1<->2 and 2<->2 reactions (+ 2<->n multi-meson fusion reactions)
- Off-shell dynamics for short living states

Degrees of freedom in HSD

- hadrons baryons and mesons including excited states (resonances)
- strings excited colour singlet states (qq q) or (q qbar)
 Based on the LUND string model
 & perturbative QCD via PYTHIA
- leading quarks (q, qbar) & diquarks (q-q, qbar-qbar)

NOT included in the transport models presented here :

- o no explicit parton-parton interactions (i.e. between quarks and gluons) outside strings!
- o no QCD EoS for partonic phase
- under construction:

PHSD – Parton-Hadron-String-Dynamics W. Cassing arXiv:0704.1410

Time evolution of the energy density

HSD transport model allows to calculate the energy momentum tensor $T^{\mu\nu}(x)$ for all space-time points x and thus the energy density $\varepsilon(r,t)$ which is identified with $T^{00}(r,t)$

Local energy density ε vs Bjorken energy density ε_{Bi}

transient time for central Au+Au at 200 GeV: $t_r \sim 2R_A/\gamma_{cm} \sim 0.13$ fm/c

• cc formation time:

 $\tau_C \sim 1/M_T \sim 1/4 GeV \sim 0.05 \text{ fm/c} < t_r$

cc pairs are produced in the initial hard NN collisions

in time period t_r

Bjorken energy density:

 $\varepsilon_{\rm Bj} = \frac{1}{A_{\perp}\tau} \frac{dE_{\rm T}}{dy}$

 A_T is the nuclei transverse overlap area τ is the formation time of the medium

,Local' energy density ε during transient time t_r : ε ~ 5[GeV/fm²/c] / [0.13 fm/c] ~ 30 GeV/fm³

HSD reproduces PHENIX data for Bjorken energy density very well
 HSD results are consistent with simple estimates for the energy density

Charmonium production in pN

Hard probe OA binary scaling!

 $\sigma(J/\Psi)$ and $\sigma(\Psi)$: parametrization of the available experimental data

But data close to threshold are still needed ! FAIR at GSI

 $\sigma_{J/\Psi}^{exp} = \sigma_{J/\Psi} + B(\chi_c \cap AJ/\Psi) \sigma_{\chi c} + B(\Psi - J/\Psi) \sigma_{\Psi}'$

Charmonium production in pN

Differential cross section of charm production is successfully parametrized, too

Charmonium production vs absorption

Charm sector reflects the dynamics in the early phase of heavy-ion collisions !

Charmonium is absorbed by

- Scattering on nucleons (normal nuclear absorption, as in pA)
- Interaction with secondary hadrons (comovers)
- Dissociation in the deconfined medium (suppression in QGP)

Anomalous J/Ψ suppression

Scenarios for anomalous charmonium suppression

QGP colour screening

[Digal, Fortunato, Satz '03] **Quarkonium dissociation T:**

state	$\mathrm{J}/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$
T_d/T_c	2.10	1.16	1.12

Comover absorption

[Gavin & Vogt, Capella et al.'97]

absorption by low energy inelastic scattering with ,comoving' mesons (m=π,η,ρ,...)

 $J/\Psi + m$? 0 A D+Dbar

 $\Psi' + \mathbf{m} ? 0 \land \mathbf{D} + \mathbf{D} \mathbf{b} \mathbf{a} \mathbf{r}$

 χ_{C} +m ? 0A D+Dbar

Modelling the **comover** scenario in **HSD**

1. Charmonia dissociation cross sections with π , ρ , K and K* mesons $J/\Psi(\chi_c, \Psi')$ + meson $(\pi, \rho, K, K^*) \leftrightarrow D$ +Dbar 10¹ J/Ψ+ρ .J/Ψ+K • Phase-space model for charmonium + σ [mb] J/Ψ+π meson dissociation: .J/Ψ+K $\sigma_{1+2-3+4}(s) = g_{isospin} 2^{4} \frac{E_{1}E_{2}E_{3}E_{4}}{s} |M_{i}|^{2} \left(\frac{m_{3}+m_{4}}{\sqrt{s}}\right)^{2}$ $i = \chi_C, J/\Psi, \Psi'$ 10⁻¹ 4.0 5.0 4.5 5.5 $|\mathbf{M}_{J/\Psi}|^2 = |\mathbf{M}_{\chi_c}|^2 = |\mathbf{M}_{\Psi'}|^2 = |\mathbf{M}_{\Psi'}|^2$ s^{1/2} [GeV] constant matrix element 2. J/ Ψ recombination cross sections by D+Dbar [qu] ອ D+Dbar^{*}, D^{*}+Dbar annihilation: **D+Dbar** -> $J/\Psi(\chi_c, \Psi')$ + meson (π , ρ , K, K*) D+Dbar D^{*}+Dbai are determined by detailed balance! 10^{0} [PRC 67 (2003) 054903] 4.0 4.5 5.0 5.5 s^{1/2} [GeV]

Charmonium recombination by DDbar annihilation

But at RHIC recreation of J/Y by D-Dbar annihilation is strong!

Modeling the QGP melting in HSD

Energy density ε (x=0,y=0,z;t) from HSD

Threshold energy densities: J/ Ψ melting: ϵ (J/ Ψ)=16 GeV/fm³ χ_c melting: ϵ (χ_c) =2 GeV/fm³ Ψ ' melting: ϵ (Ψ ') =2 GeV/fm³

[OL et al., nucl-th/0612049, NPA 786 (2007) 183]

Comparison to data at SPS energy

Pb+Pb and In+In @ 158 A GeV comover absorption

Pb+Pb and In+In @ 158 A GeV QGP threshold melting

[OL et al NPA786 (2007) 183]

 $\epsilon(J/\Psi)=16 \text{ GeV/fm}^3, \epsilon(\chi_c)=\epsilon(\Psi')=2 \text{ GeV/fm}^3$

Ψ' data contradict threshold melting scenario with lQCD ϵ^d

 $ε(J/Ψ)=16 \text{ GeV/fm}^3,$ $ε(χ_c) = 2 \text{ GeV/fm}^3,$ $ε(Ψ') = 6.55 \text{ GeV/fm}^3$

• Set 2: an increase of the melting energy density $\varepsilon(\Psi') = 6.55 \text{ GeV/fm}^3$ reduces the Ψ' suppression, but contradicts LQCD predictions for $T^d(\Psi') \sim 1.2 T_C!$

[OL et al., nucl-th/0612049, NPA07]

Comparison to data at RHIC energy

Comover absorption + regeneration A successful prediction R.Rapp : y=0 RAA Thews : y=0 Nu Xu : y=0Bratkovskaya : y=0 **Regeneration is essential!** Andronic : y=0 0.8 0.6 **HSD** 0.4 0.2 **NB:** Au+Au : |y|<0.35 obtained assuming 0 50 100 150 200 250 300 350 400 Number of Participants the existance of comovers **R.** Rapp et al.PRL 92, 212301 (2004) throghout the collision, **R.** Thews et al, Eur. Phys. J C43, 97 (2005) Yan, Zhuang, Xu, PRL97, 232301 (2006) i.e. at all energy densities. Bratkovskaya et al., PRC 69, 054903 (2004) A. Andronic et al., NPA789, 334 (2007)

Au+Au @ s^{1/2}=200 GeV Comover absorption + regeneration

Au+Au @ s^{1/2}=200 GeV Threshold melting

Rapidity !

HSD predictions for FAIR energy

Energy density at FAIR

Huge energy density is reached ($\epsilon > \epsilon_{crit}$ =1 GeV/fm³) also at FAIR (> 5 A GeV). Additonally, high baryon density.

J/\ excitation function

Comover reactions in the hadronic phase give almost a constant suppression; pre-hadronic reactions lead to a larger recreation of charmonia with E_{beam} .

The J/ Ψ melting scenario with hadronic comover recreation shows a maximum suppression at $E_{beam} = 1$ A TeV; exp. data ?

\ excitation function

Different scenarios can be distinguished at FAIR energies: Comover scenario predicts a smooth excitation function whereas the 'threshold melting' shows a step in the excitation function

Predictions for J/ Ψ and Ψ' suppression in Au+Au at **CBM**

Possible mechanisms can be disentangled:

 $\Psi'/(J/\Psi)$ is lower in the ,comover absorption' since the average comover density decreases only moderately with lower bombarding energy whereas the energy density falls rapidly

[OL et al., nucl-th/0612049, NPA07]

HSD: v_2 of D+Dbar and J/ Ψ from Au+Au versus p_T and y at RHIC

HSD predictions for CBM elliptic flow at 25 A GeV

•HSD: D-mesons and J/Ψ follow the charged particle flow => small v₂

Possible observation at CBM: strong initial flow of D-mesons and J/Ψ due to partonic interactions!

Challenge for CBM!

- \Box J/ Ψ probes early stages of fireball and HSD is the tool to model it.
- Comover absorption and threshold melting both reproduce J/Ψ survival in Pb+Pb as well as in In+In @ 158 A GeV, while Ψ' data are in conflict with the melting scenario.
- Comover absorption and colour screening fail to describe Au+Au at s^{1/2}=200 GeV at mid- and forward rapidities simultaneously.
- Deconfined phase is clearly reached at RHIC, but a theory having the relevant/proper degrees of freedom in this regime is needed to study its properties (->PHSD).

PHSD - transport description of the partonic and hadronic phases

E. Bratkovskaya, W. Cassing, H. Stöcker

Thank you!

Transport aproach (HSD, UrQMD, ...)

- Non-equilibrium
 - -> full evolution of the collision
- Universality
 - -> large range of $s^{1/2}$ from one code
 - -> predictions
 - -> exitation functions
- High presicion
 - -> distinguish physical mechanisms
 - -> possibility of verification by exp