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Motivation

@ Suppose we have thermal model or transport code or ...
which describes data, e.g. dileptons

@ models contain simple and more fancy things
@ Have we learned everything?

@ only if we disentangle which aspects of model are really
important for description of data

@ answer depends on experimental resolution

@ might differ for same system but different probes
(unified description desired)
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Distinguish simple from fancy aspects:

suppose effects seen in A+A ...
@ are just N + N (or N+A) rescaled
~ no medium effect
~+ “simple” to judge (maybe problem: neutron)
@ are sequence of elementary two-body scatterings
~ simple medium effect (scattering of secondaries, e.g. pions)
@ involve elementary N-body scatterings, N > 2
~» not simple, but also not fancy
@ show collective behavior

@ potentials (mass shifts)
@ modified cross sections (screening)
@ collective excitations, level repulsion

~ non-trivial in-medium effects
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@ not all elementary cross sections known
@ comparing one model with another one
— use same elementary input (cross sections)
@ better gradually down-grade one model
(sometimes not so easy to get intermediate steps...)
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Problems for clear distinction

try to distinguish
Two-body N-body collective

@ not all elementary cross sections known

@ comparing one model with another one
— use same elementary input (cross sections)

@ better gradually down-grade one model
(sometimes not so easy to get intermediate steps...)
in the following: concentrate on one effect:
— resonance-hole excitation — fig.
@ elementary two- and three-body reactions it is based on
@ difference to collective behavior
@ problems in distinction
@ implementation in transport, thermal model, ...
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Resonance-hole excitation

@ dilepton rate (equilibrium) ~ ImR(q) ng(dop)
@ spectral information contained in dileptons: ImR = A/q?
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@ to be multiplied by production probability
(Bose factor ng or ...)

(G=0,s=0?)

M. Post,
PhD thesis,
Giessen 2004
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Problems for clear distinction

try to distinguish
Two-body N-body collective

@ not all elementary cross sections known

@ comparing one model with another one
— use same elementary input (cross sections)

@ better gradually down-grade one model
(sometimes not so easy to get intermediate steps...)
in the following: concentrate on one effect:
— resonance-hole excitation — fig.
@ elementary two- and three-body reactions it is based on
@ difference to collective behavior
@ problems in distinction
@ implementation in transport, thermal model, ...
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Two-body scattering events

@ suppose effects seen in A+A are just sequence of
elementary two-body scatterings
~ simple medium effect
@ but includes already:
@ N+N—>N+N+/£H

o+ — 0t
o m+ N - N+
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Two-body scattering events

@ suppose effects seen in A+A are just sequence of
elementary two-body scatterings
~+ simple medium effect
@ but includes already:
@ N+N—=>N+N+ /70~
o mHmw—p— LTl
o m+N —= N* = N + ¢t/ (Dalitz decay of resonance)
-

\NT 1~

T l+
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Two-body scattering events — everything settled?

® N+ N — N+ N + £/~ measurable

@ 7+ — ¢4~ from inverse reaction

@ T +N-—=N+/2T12

~» can sizably contribute at low invariant masses — fig.
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Importance of baryons

full calculation > without baryons
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van Hees/Rapp, Phys.Rev.Lett.97:102301,2006

@ How fancy is that?
@ Just elementary 7 + N — N + £7£~ with thermal weight?
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Importance of elementary 7N contribution
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@ Steele, Zahed, Phys.Rev.D60:037502,1999
@ note: p-meson peak unchanged
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Two-body scattering events — everything settled?

\NT [~

T+N—=>N+LT7?

problem: not all cross sections known

can learn about ¥ + N — N + £/ cross sections!
complementary to pion beam (slow = thermal pions)
“bread and butter” for transport (~~ “traditional transport”)

¢ ¢ { % e
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Collective effects — toy model

(at least) in equilibrium possible:
@ take elementary processes

\NTT [~
N

NP

@ include them in p-meson self energy N(q)
~ linear-density approximation
— density of N’s accompanying p-meson! (detailed balance)

.W\‘\ /,M .~.< >w.

@ compare result to elementary two-body reactions
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p-meson spectral function

@ self energy MN(q) = N2,(q) + MNy-n-2(q)
@ spectral function

1
g2 —m2 —(q)

A(@) = —Im

—Iml(q)
[a2 — m2 — Rel(q)]? + [ImM(q)]2

ImMa.(q)  ImMy-n-1(a)
.P+[. 2 [.P+[-P

@ how to get back elementary two-body reactions?
(=traditional transport)

~ replace in denominator N — My = My,
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Spectral information including collective effects

. @ genuine p-meson branch (27)
Decomposition:
@ resonance-hole branch
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Two-body contributions versus collective effects
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sum of colored curves (collective effects)
different from sum of black curves (two-body reactions)

especially: level repulsion, depletion of p-meson peak
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Two-body contributions versus collective effects

@ collective effects different from two-body reactions
@ especially: level repulsion, depletion of p-meson peak

@ but: strength at low invariant masses already from
two-body reactions

~» need good resolution to distinguish
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Two-body contributions versus collective effects

o ! I o}

collective effects different from two-body reactions
especially: level repulsion, depletion of p-meson peak

but: strength at low invariant masses already from
two-body reactions

need good resolution to distinguish

why are results different at all?

after all “linear-density approximation”
additional effects from three-body reactions!
are there always collective effects?
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— also possible for non-equilibrium?

@ technical answer:
collective effects emerge by putting self energy in
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Are there always collective effects?

so far: equilibrium considerations
also possible for non-equilibrium?

technical answer:
collective effects emerge by putting self energy in
denominator

in principle also possible for non-equilibrium situations
but: not only a technical question!
physical interpretation of denominator effect?
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Physical interpretation of denominator effect

1
g2 —mz —T1(q)

@ contribution to p-meson self energy M: -©~

@ interpretation: multiple scattering on medium constituents

A(q) = —Im

D N LY

@ not correct, if medium changes rapidly in time
— does system stay together/stay unchanged long enough?
— cf. works of C. Greiner/Schenke
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Effects from N-body scattering

Why are results from two-body scatterings different from
collective effects even at low densities?
— perform serious linear-density expansion:

o I-I — |-|27r + I-IN*N_]'
@ [y, =~ MNyy (apart from Bose enhancement)
@ [y«n-: linear in nucleon density

1

Al = M )

—ImMy,(q) — ImMy.-:(9)
[92 — mZ — Rel1(q)]? + [Im(q)]?

@ so far: replace in denominator I — My = Mo,
@ Now: serious expansion
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Serious linear-density expansion

@ serious expansion:
1
9% — mZ — Mz () — My-n-2(q)

2
1
= Avac(q) —Im l<q2 _ m/z) _ nvac(Q)) nN*Nl(q)]

@ graphical representation:
(have to cut propagator, not only self energy!)

Al@) = —Im
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Subtle interference effects

@ in terms of elementary scattering diagrams:
(not displayed: p-meson finally decays to dileptons)

2 2 2

\\ \\ \\ \\
I Bt e U I B

@ subtle interferences of three-body reactions!
@ note: still within linear-density approximation:
< one nucleon accompanies p-meson/dileptons
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Compare various effects
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@ low-mass enhancement similar
@ no depletion of p-meson peak in pure two-body reactions
@ but depletion already when including three-body reactions
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Compare various effects — higher densities
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differences between cglllgcwtive and three-body effects:
@ collective effects show enhancement at lower masses
— level repulsion
@ yields in part negative for three-body effects
— signals limit of applicability of linear-density approximation
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How to implement N-body effects?

@ problem (same as before):
transition amplitudes often unknown

@ for 3 — 2 reactions: back reaction helps
@ thermal models: detailed balance relates

X1+Xo+Xg+...2Y A
to (semi-)two-body reaction
Y H+Y =5 X1+ X+ X3+ ...

@ transport: in principle N-body reactions can be included
(rates instead of geometric cross sections)

@ do not forget interferences
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Summary

try to distinguish
Two-body N-body collective

@ experiment: need proper resolution

@ low-mass enhancement not neccessarily sign of anything
beyond two-body reactions (if TN — dileptons sizable)

@ depletion of rho peak important issue
(cf. also review by Rapp/Wambach)

@ transport and thermal models: use same elementary cross
sections before drawing conclusions about fancy things

@ thermal models: compare with and without collective
effects, with and without interferences/N-body effects

@ transport: two-body standard, N-body doable,
collective effects only possible with “offshell transport”



