Density Fluctuations as a Signal for First Order Phase Transitions

Chihiro Sasaki (GSI)

based on
C. Sasaki, B. Friman and K. Redlich, hep-ph/0702254

QCD phase structure and fluctuations

- conserved charge fluctuations: critical behaviors
- net quark number/electric charge susceptibilities : search for the CEP

C. S., B. Friman, K. Redlich, Phys. Rev. D, 2007

$\chi_{q} \rightarrow \infty$ at CEP while $\chi_{q} \sim$ finite for the 1 st order transition in equilibrium
- heavy-ion collisions : deviation from equilibrium, instabilities

The nature of first order phase transition

- change of thermodynamic potential from broken to symmetric phase

appearance of meta-stable state in $T_{1}<T<T_{2}$
- stability of a system

$\partial P / \partial V<0$: stable
$\partial P / \partial V>0$: unstable
$\partial P / \partial V=0$: spinodals
A-B : supercooling (symmetric phase)
B-C : non-equilibrium state
C-D : superheating (broken phase)

Phase diagram in the Nambu-Jona-Lasinio model

- NJL model with two flavors

$$
\begin{aligned}
& \mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+\bar{\psi} \mu \gamma_{0} \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \vec{\tau} \gamma_{5} \psi\right)^{2}\right] \\
& m=5.6 \mathrm{MeV}, G_{S} \Lambda^{2}=2.44, \Lambda=587.9 \mathrm{MeV}
\end{aligned}
$$

- phase diagram
 critical end point (CEP) : $T=81 \mathrm{MeV}, \mu=330 \mathrm{MeV}$ spinodal lines :
$\left(\frac{\partial P}{\partial V}\right)_{T}=0 \quad$: isothermal $\left(\frac{\partial P}{\partial V}\right)_{S}=0 \quad$: isentropic

$$
\left(\frac{\partial P}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial V}\right)_{S}+\frac{T}{C_{V}}\left[\left(\frac{\partial P}{\partial T}\right)_{V}\right]^{2}
$$

Quark number susceptibility

- deviation from equilibrium, large fluctuations induced by instabilities

- at 1st order transition point $(\mathrm{A}, \mathrm{D}): \chi_{q}$ is finite
- at isothermal spinodal point (B, C) : χ_{q} diverges and changes its sign $\frac{\partial P}{\partial V}<0$ for stable/meta-stable state $\Rightarrow \frac{\partial P}{\partial V}>0$ for unstable state
- in unstable region (B-C) : χ_{q} is finite and negative
- divergence of χ_{q} :

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{n_{q}^{2}}{V} \frac{1}{\chi_{q}}=0 \quad \text { at any spinodal points } \\
& \Rightarrow \chi_{q} \text { diverges along the isothermal spinodal lines }
\end{aligned}
$$

- electric charge susceptibility also diverges:

$$
\chi_{Q}=\frac{1}{36} \chi_{q}+\frac{1}{4} \chi_{I}+\frac{1}{6} \frac{\partial^{2} P}{\partial \mu_{q} \partial \mu_{I}}
$$

- spinodal decomposition for the chiral/deconfinement phase transition in heavy-ion collisions :
instabilities, enhancement of baryon and strangeness fluctuations
Heiselberg, Pethick and Ravenhall (1988);
Bower and Gavin (2001);
Chomaz, Colonna and Randrup (2004);
Koch, Majumder and Randrup (2005)
- toward the critical end point
- two positive branches are approaching
- instability region shrinks
- strength of divergence remains the same because of the same critical exponents :
$\chi_{q} \sim\left(\mu-\mu_{c}\right)^{-\gamma}$,
$\gamma=1 / 2 \quad\left(m_{q}=0\right)$
$\gamma=2 / 3 \quad\left(m_{q} \neq 0\right)$
- specific heat for constant pressure

$$
C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P}=T V\left[\chi_{T T}-\frac{2 s}{n_{q}} \chi_{\mu T}+\left(\frac{s}{n_{q}}\right)^{2} \chi_{q}\right]
$$

Experimental evidence

- low-energy nuclear collisions

M. D'Agostino et al., Phys. Lett. B 473, 219 (2000)
negative heat capacity : anomalously large fluctuations
\Rightarrow an evidence of the 1st order liquid-gas phase transition

Summary and conclusions

- The quark number susceptibility diverges if spinodal phase separation occurs.
cf. finite in the equilibrium transition
- a signal not only for the CEP but also for the 1st order phase transitions \Rightarrow large fluctuations will be seen in a wider range of the phase diagram.
- CBM energy \sim the 1st order phase transition large fluctuations of baryon number, electric charge, proton number will be expected.

