Dilepton measurements with CBM

Volker Friese

v.friese@gsi.de

The CBM Experiment

"Standard" setup with electron detectors

CBM: Overview of Observables

- Identified hadrons (π, K, p)
- Hyperons (Λ, Ξ, Ω)
- Open charm (D^0, D^{\pm})
- Direct photons
- Charmonium (ψ, ψ')
- Low-mass vector mesons
- Charmonium (ψ, ψ')
- Low-mass vector mesons

STS + TOF

STS (+ TOF)

STS (+ TOF)

ECAL

STS + RICH + TRD

STS + RICH (+ TRD + TOF)

STS + MuCH (+ TRD + TOF)

STS + MuCH (+ TRD + TOF)

spectra, yields

flow

fluctuations

from p+p to Pb+Pb

from 10 AGeV to 35 (45) AGeV

Measuring Electron Pairs with CBM

- electron identification
 - RICH (12 GeV)
 - TRD (1 GeV)
- background
 - mis-identified hadrons
 - Dalitz decays
 - $-\gamma$ conversion pairs
- no electron identification before the magnetic field

suppression of electronic background

non-vertex: by tracking

for charmonium: single electron p_t

for LVM: dedicated cut strategy for rejection of conversion and Dalitz

Electron Identification in RICH

Pattern recognition in the PM plane

Ring finding efficiency vs. momentum

Electron Identification in RICH

ring radius vs. momentum

composition of tracks identified as electrons (UrQMD events)

Improvement of Electron ID by TRD and TOF

RICH-identified electrons

RICH and TRD-identified electrons

Pion Suppression and Electron Efficiency

Background topology for LVM

Volker Friese

- identified in RICH

Global Track

CBM Forum, GSI, February 2007

0.04

0.02

n STS e,

LVM: Efficiency of cuts, S/B ratio

Enhancement region

ω/φ region

Rejection of background from Dalitz and conversion by cuts on

distance to closest neighbour pair opening angle pair invariant mass single electron p_t

0.
$$< m_{to}/(GeV/c^2) < 0.2$$

....
$$0.2 < m_{e^+e^-}/(GeV/c^2) < 0.6$$

$$0.6 < m_{e^+e^-}/(GeV/c^2) < 1.2$$

LVM: Current Status

Results include full event reconstruction and electron identification

LVM: Phase Space Coverage

after all cuts

good mid-rapidity coverage

Charmonium in the Di-electron channel

Results for central Au+Au collisions J/ψ yield from HSD

Full event reconstruction and electron identification in RICH and TRD Single electron $p_t > 1.2 \text{ GeV}$

Measuring Muons with CBM

different absorber concepts under study

"Compact" design with 5 Fe absorbers and 15 detector layers

Muon Option: Results for LVM

Results include full tracking through STS and absorbers Muons are identified after the last absorber

LVM: Efficiency and Phase Space

Mid-rapidity coverage can be improved by allowing "soft tracks" (crossing 4 of 5 absorbers)

Charmonium in the Di-Muon Channel

High momentum of charmonium daughters allows a clean identification High quality signal expected

Muon Measurement: Detector Issues

Very high hit rates after first absorber

Coordinate resolution $\approx 100 \ \mu m$ required for tracking through the absorber system

Possible solutions GEM / micromegas / MWPC depending on station number / distance from beam

Summary

- Both electron and muon option give access to low-mass vector mesons and charmonium
- Feasibility studies are based on full event reconstruction and electron / muon identification. They are still subject to further optimisation.
- Performance on low-mass VM is similar for electrons and muons; mid-rapidity coverage is more difficult for muons
- Performance on charmonium is better for muons: higher charmonium states probably not measurable with electrons
- Electron measurements rely on established detector technology (RICH, TRD)
- Detector issues for muon measurements not yet solved