

Heavy-Flavor Production at RHIC

Kai Schweda, University of Heidelberg / GSI Darmstadt

1) Introduction

2) Open charm production at RHIC

3) Heavy – quarkonia (J/ ψ , \Upsilon)

4) Summary

Quark Gluon Plasma

Source: Michael Turner, National Geographic (1996)

Quark Gluon Plasma:

- (a) Deconfined and
- (b) thermalized state of quarks and gluons
- → Study partonic EOS at RHIC and LHC Study effects of chiral symmetry restoration

Quark Masses

1)

2)

 \mathbf{T}

 $\mathbf{\uparrow}$

Higgs mass: electro-weak

quark mass)

mass)

masses.

symmetry breaking. (current

QCD mass: Chiral symmetry

breaking. (constituent quark

Strong interactions do not

Important tool for studying

properties of the hot/dense

Test pQCD predictions at

affect heavy-quark

medium at RHIC.

RHIC and LHC.

Identify Heavy – Flavor at RHIC:

- Phenix
 - Electrons
 - EMC and RHIC, mid-rapidity
 - Muons
 - Muon arms, forward rapidity
- STAR (all mid-rapidity)
 - D-mesons by inv. mass
 - Muons by TPC + ToF
 - Electrons
 - TPC + ToF (p_T<4 GeV/c)
 - EMC + TPC (p_T>1.5 GeV/c)

Single – Electron Background

- Experimental background
 - $\gamma \rightarrow e^+ + e^-$ (small for Phenix)
 - $\pi^0 \rightarrow \gamma + e^+ + e^-$
 - η, ω, φ, etc.
- Phenix almost material free background largely reduced two different methods
 - Converter method
 - Cocktail method
- STAR large material budget precise background subtraction

Heavy – Flavor from STAR •

- Three different methods
 - D mesons
 - Electrons
 - Muons
- Charm cross section is well constrained (large p_T coverage)
 - 95% of the total crc Muon M2 Dis. 0.17-0.21
 - Direct measureme
 - D mesons and m constrain the low-p

Heavy – Flavor from PHENIX.

- Many different datasets
 - Non-photonic electron spectra
 - Improving statistics over time
 - Lowering p_T cut
 - Reduces
 extrapolation
 uncertainties

Total Charm Production at RHIC(i)

- FONLL as baseline
 - Large uncertainties due to m_c, factorization/renormalization scale
- Phenix
 - factor 2 higher, still consistent within errors
 - Only electrons but less background
- STAR
 - Large discrepancies between STAR and FONLL
 - more detector material
 - the only direct D-mesons measurement
 - 95% of the total cross section is measured
- Energy dependence, CBM, RHIC(200,500) and LHC will help constraining parameters

Total Charm Production at RHIC (ii)

- STAR and PHENIX data suggest N_{bin} scaling
 - Charm is produced by initial collisions
 - No room for thermal production of charm
 - Both experiments
 disagree by factor 2- 3!

A. Suaide, nucl-ex/0702035.

Non-photonic Electron Spectra

- Factor 2 3 discrepancy
- Independent on p_T
- Background strongly depends on p_T !
- Normalization Problem ?
- Displaced vertex will give precision data
 - \Rightarrow STAR and PHENIX upgrades

J/ψ Production

Low energy (SPS):few ccbar quarks in the system \rightarrow suppression of J/ ψ High energy (LHC):many ccbar pairs in the system \rightarrow enhancement of J/ ψ

→ Signal of de-confinement + thermalization of light quarks !

Cold Nuclear Matter Effects

 EKS shadowing + nuclear absorption
 σ_{abs} < 3mb
 CNM effects are small at mid-rapidity at RHIC

⇒ negligible at LHC

PHENIX: PRL 96, 012304 (2006); Calcs: S. Klein and R. Vogt, PRL 91 (2003) 142301.

J/y Momentum vs Centrality

J/y Momentum Distribution

Initial: flat

Regeneration: dropping w/ centrality

 \Rightarrow **Regeneration of** J/ψ **important at RHIC !**

L. Yan. P. Zhuang and N.Xu, PRL 97 (2006) 232301.

Vector Spectral Functions

Kai Schweda

Schematical Picture

Suppose J/ψ does not melt

- \rightarrow R_AA should saturate > 0.6
- \rightarrow no more feeding from χ_C and $\psi' \rightarrow J/\psi + X$

Dilepton Forum, GSI, Feb 27, 2007

Kai Schweda

J/ ψ Suppression (R_AA)

J/\u03c8 R_AA Rapidity Dependence

- Sequential screening of χ_{C} and ψ^{\prime}

additional suppression
 from gluon saturation at
 forward rapidity

 expect different centrality dependence

⇒ PHENIX data is flat !

⇒ sequential screening ruled out at RHIC !

PHENIX data: nucl-ex/0611020.

Statisitcal Hadronization of Charm

Assumptions:

- All charm-quarks produced in initial scattering
- charm in thermal equilibrium (not chemical equilibrium)
- All J/ψ produced at freeze-out
- Include nuclear corona effects
- Input: open charm yield

Probe deconfinement and thermalization

*P. Braun-Munzinger, K. Redlich, and J. Stachel, nucl-th/0304013.

Comparison to Data(i)

Assume pQCD initial cross section

- centrality and rapidity distribution well reproduced for PHENIX data
- large uncertainty in experimental charm cross section

A. Andonic et al., nucl-th/06011023; nucl-th/0701079.

Comparison to Data (ii)

A. Andonic et al., nucl-th/0701079.

Predictions for LHC

A. Andonic et al., nucl-th/0701079.

Y Production at RHIC

STAR Detector Upgrade

Full Barrel MRPC - TOF

Heavy Flavor Tracker

- $D^0 \rightarrow K + \pi$, $C\tau = 123 \mu m$
- Measure decay vertex, $\sigma \leq 50 \mu m$
- enhance S/B by factor 100
- → precise heavy-flavor measurements !

http://rnc.lbl.gov/~jhthomas/public/HFT/hft-proposal.pdf

Measure Vector Mesons

 \Box Dileptons: e.g. $\phi \rightarrow e^+e^-$

e⁺

Huge Background:

 $\gamma \rightarrow e^+e^-$

HFT

HFT discriminates background !

HFT enhances dilepton measurements in STAR

Detectors	ω	φ
TPC+TOF	8 M	2 M
TPC+TOF+SVT+HFT	200K	100K

- \Box At RHIC $\sigma_{cc} = 300 1200 \mu b$
- $\hfill\square$ Regeneration of J/ψ important at RHIC
- □ Regeneration will dominate at LHC
- ⇒ Clear QGP signature
- □ Angular correlations of D-Dbar mesons
- ⇒ Sensitive to medium properties
- Displaced vertex for precise measurements
- □ STAR and PHENIX upgrades
- □ ALICE: ITS + TPC + TRD + ToF

Early Model-predictions and RHIC Data

GSİ

Dilepton Forum, GSI, Feb 27, 2007

Kai Schweda

J/ψ at SPS and RHIC

 Puzzle: No energy dependence

GSI

Accident ?

Corona Effect

G 5 1

J/ψ from STAR and PHENLY.

